Chemotaxis towards carbohydrates is mediated, in enteric bacteria, either by the transport-independent, methylation-dependent chemotaxis pathway or by transport and phosphorylation via the phosphoenolpyruvate (PEP)-dependent phosphotransferase system (PTS). This study shows that Rhodobacter sphaeroides is chemotactic to a range of carbohydrates but the response involves neither the classical methyl-accepting chemotaxis protein (MCP) pathway nor the PTS transport pathway. The chemoattractant fructose was transported by a fructose-specific PTS system, but transport through this system did not appear to cause a chemotactic signal. Chemotaxis to sugars was inducible and occurred with the induction of carbohydrate transport systems and with substrate incorporation. A mutation of the glucose-6-phosphate dehydrogenase gene (zyyf) inhibited chemotaxis towards substrates metabolized by this pathway although transport was unaffected. Chemotaxis to other, unrelated, chemoattractants (e.g. succinate) was unaffected. These data, in conjunction with the fact that mannitol and fructose (which utilize different transport pathways) compete in chemotaxis assays, suggest that in R. sphaeroides the chemotactic signal is likely to be generated by metabolic intermediates or the activities of the electron-transport chain and not by a cellsurface receptor or the rate or mode of substrate transport.
Various factors involved in haemostasis also regulate the development of new blood vessels by a process called angiogenesis. Enzymatic cleavage of fibrin yields a variety of fibrin degradation products, particularly in areas of intense angiogenesis such as in healing wounds and active atherosclerotic plaques. One of these, fibrin fragment E (FnE), is a potent angiogenic factor in the chick chorioallantoic membrane assay of angiogenesis. Here, we extend these studies to show that FnE stimulates the proliferation, migration and differentiation of human dermal microvascular endothelial cells (HuDMECs) in vitro, both in the absence and presence of such additional endothelial growth factors as vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF). We also show that these stimulatory effects occur at concentrations of the protein known to be present in angiogenic tissues in vivo. FnE enhanced the angiogenic effects of VEGF or bFGF, indicating a possible synergy between the signalling pathways used by these three angiogenic factors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.