Key Points AML cells have increased mitochondrial mass, low respiratory chain complex activities, and low spare reserve capacity compared with normal cells. AML cells have heightened sensitivity to inhibitors of the respiratory chain complexes and oxidative stressors.
BackgroundOvarian carcinoma is a rarely curable disease, for which new treatment options are required. As agents that block HMG-CoA reductase and the mevalonate pathway, the statin family of drugs are used in the treatment of hypercholesterolemia and have been shown to trigger apoptosis in a tumor-specific manner. Recent clinical trials show that the addition of statins to traditional chemotherapeutic strategies can increase efficacy of targeting statin-sensitive tumors. Our goal was to assess statin-induced apoptosis of ovarian cancer cells, either alone or in combination with chemotherapeutics, and then determine these mechanisms of action.MethodsThe effect of lovastatin on ovarian cancer cell lines was evaluated alone and in combination with cisplatin and doxorubicin using several assays (MTT, TUNEL, fixed PI, PARP cleavage) and synergy determined by evaluating the combination index. The mechanisms of action were evaluated using functional, molecular, and pharmacologic approaches.ResultsWe demonstrate that lovastatin induces apoptosis of ovarian cancer cells in a p53-independent manner and synergizes with doxorubicin, a chemotherapeutic agent used to treat recurrent cases of ovarian cancer. Lovastatin drives ovarian tumor cell death by two mechanisms: first, by blocking HMG-CoA reductase activity, and second, by sensitizing multi-drug resistant cells to doxorubicin by a novel mevalonate-independent mechanism. This inhibition of drug transport, likely through inhibition of P-glycoprotein, potentiates both DNA damage and tumor cell apoptosis.ConclusionsThe results of this research provide pre-clinical data to warrant further evaluation of statins as potential anti-cancer agents to treat ovarian carcinoma. Many statins are inexpensive, off-patent generic drugs that are immediately available for use as anti-cancer agents. We provide evidence that lovastatin triggers apoptosis of ovarian cancer cells as a single agent by a mevalonate-dependent mechanism. Moreover, we also show lovastatin synergizes with doxorubicin, an agent administered for recurrent disease. This synergy occurs by a novel mevalonate-independent mechanism that antagonizes drug resistance, likely by inhibiting P-glycoprotein. These data raise important issues that may impact how statins can best be included in chemotherapy regimens.
The antimycotic ciclopirox olamine is an intracellular iron chelator that has anticancer activity in vitro and in vivo. We developed an oral formulation of ciclopirox olamine and conducted the first-in-human phase I study of this drug in patients with relapsed or refractory hematologic malignancies (Trial registration ID: NCT00990587). Patients were treated with 5-80 mg/m 2 oral ciclopirox olamine once daily for five days in 21-day treatment cycles. Pharmacokinetic and pharmacodynamic companion studies were performed in a subset of patients. Following definition of the half-life of ciclopirox olamine, an additional cohort was enrolled and treated with 80 mg/m 2 ciclopirox olamine four times daily. Adverse events and clinical response were monitored throughout the trial. Twenty-three patients received study treatment. Ciclopirox was rapidly absorbed and cleared with a short half-life. Plasma concentrations of an inactive ciclopirox glucuronide metabolite were greater than those of ciclopirox. Repression of survivin expression was observed in peripheral blood cells isolated from patients treated once daily with ciclopirox olamine at doses greater than 10 mg/m 2 , demonstrating biological activity of the drug. Dose-limiting gastrointestinal toxicities were observed in patients receiving 80 mg/m 2 four times daily, and no dose limiting toxicity was observed at 40 mg/m 2 once daily. Hematologic improvement was observed in two patients. Once-daily dosing of oral ciclopirox olamine was well tolerated in patients with relapsed or refractory hematologic malignancies, and further optimization of dosing regimens is warranted in this patient population.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.