Progestins induce lipid accumulation in progesterone receptor (PR)-positive breast cancer cells. We speculated that progestin-induced alterations in lipid biology confer resistance to chemotherapy. To examine the biology of lipid loaded breast cancer cells, we used a model of progestin-induced lipid synthesis. T47D (PR-positive) and MDA-MB-231(PR-negative) cell lines were used to study progestin response. Oil red O staining of T47D cells treated with progestin showed lipid droplet formation was PR dependent, glucose dependent and reduced sensitivity to docetaxel. This protection was not observed in PR-negative MDA-MB-231 cells. Progestin treatment induced stearoyl CoA desaturase-1 (SCD-1) enzyme expression and chemical inhibition of SCD-1 diminished lipid droplets and cell viability, suggesting the importance of lipid stores in cancer cell survival. Gas chromatography/mass spectroscopy analysis of phospholipids from progestin-treated T47D cells revealed an increase in unsaturated fatty acids, with oleic acid as most abundant. Cells surviving docetaxel treatment also contained more oleic acid in phospholipids, suggesting altered membrane fluidity as a potential mechanism of chemoresistance mediated in part by SCD-1. Lastly, intact docetaxel molecules were present within progestin induced lipid droplets, suggesting a protective quenching effect of intracellular lipid droplets. Our studies suggest the metabolic adaptations produced by progestin provide novel metabolic targets for future combinatorial therapies for progestin-responsive breast cancers.
PurposeProstate cancer (PCa) is the second most common cause of cancer-related death among men in the United States. Due to the lipid-driven metabolic phenotype of PCa, imaging with 2-deoxy-2-[18F]fluoro-d-glucose ([18F]FDG) is suboptimal, since tumors tend to have low avidity for glucose.ProceduresWe have used the fat oxidation inhibitor etomoxir (2-[6-(4-chlorophenoxy)-hexyl]oxirane-2-carboxylate) that targets carnitine-palmitoyl-transferase-1 (CPT-1) to increase glucose uptake in PCa cell lines. Small hairpin RNA specific for CPT1A was used to confirm the glycolytic switch induced by etomoxir in vitro. Systemic etomoxir treatment was used to enhance [18F]FDG-positron emission tomography ([18F]FDG-PET) imaging in PCa xenograft mouse models in 24 h.ResultsPCa cells significantly oxidize more of circulating fatty acids than benign cells via CPT-1 enzyme, and blocking this lipid oxidation resulted in activation of the Warburg effect and enhanced [18F]FDG signal in PCa mouse models.ConclusionsInhibition of lipid oxidation plays a major role in elevating glucose metabolism of PCa cells, with potential for imaging enhancement that could also be extended to other cancers.Electronic supplementary materialThe online version of this article (doi:10.1007/s11307-014-0814-4) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.