Variability of airway function is a feature of asthma, spanning timescales from months to seconds. Short-term variation in airway resistance (Rrs) is elevated in asthma and is thought to be due to increased variation in the contractile activation of airway smooth muscle. If true, then variation in Rrs should decrease in response to bronchodilators, but this has not been investigated.Using the forced oscillation technique, Rrs and the variation in Rrs from 4-34 Hz were measured in 39 children with well-controlled mild-to-moderate asthma and 31 healthy controls (7-13 yrs) before and after an inhaled bronchodilator (200 mg salbutamol) or placebo.In agreement with other findings, baseline Rrs at all frequencies and the SD of Rrs (Rrs SD) below 14 Hz were found to be elevated in asthma while neither forced expiratory volume in one second nor the mean forced expiratory flow between 25 and 75% of forced vital capacity were different compared with controls. The present authors found that Rrs SD changed the most of any measurement in asthma, and this was the only measurement that changed significantly more in children with asthma following bronchodilator administration.The present results show that like airway narrowing, short-term airway variability of resistance may be a characteristic feature of asthma that may be useful for monitoring response to therapy.
Airway smooth muscle (ASM) cells are constantly under mechanical strain as the lung cyclically expands and deflates, and this stretch is now known to modulate the contractile function of ASM. However, depending on the experimental conditions, stretch is either beneficial or harmful limiting or enhancing contractile force generation, respectively. Stretch caused by a deep inspiration is known to be beneficial in limiting or reversing airway constriction in healthy individuals, and oscillatory stretch lowers contractile force and stiffness or lengthens muscle in excised airway tissue strips. Stretch in ASM culture has generally been reported to cause increased contractile function through increases in proliferation, contractile protein content, and organization of the cell cytoskeleton. Recent evidence indicates the type of stretch is critically important. Growing cells on flexible membranes where stretch is non-uniform and anisotropic leads to pro-contractile changes, whereas uniform biaxial stretch causes the opposite effects. Furthermore, the role of contractile tone might be important in modulating the response to mechanical stretch in cultured cells. This report will review the contrasting evidence for modulation of contractile function of ASM, both in vivo and in vitro, and summarize the recent evidence that mechanical stress applied either acutely within 2 h or chronically over 11 d is a potent stimulus for cytoskeletal remodelling and stiffening. We will also point to new data suggesting that perhaps some of the difference in response to stretch might lie with one of the fundamental differences in the ASM environment in asthma and in culture--the presence of elevated contractile tone.
A deep inspiration (DI) temporarily relaxes agonist-constricted airways in normal subjects, but in asthma airways are refractory and may rapidly renarrow, possibly due to changes in the structure and function of airway smooth muscle (ASM). Chronic largely uniaxial cyclic strain of ASM cells in culture causes several structural and functional changes in ASM similar to that in asthma, including increases in contractility, MLCK content, shortening velocity, and shortening capacity. However, changes in recovery from acute stretch similar to a DI have not been measured. We have therefore measured the response and recovery to large stretches of cells modified by chronic stretching and investigated the role of MLCK. Chronic, 10% uniaxial cyclic stretch, with or without a strain gradient, was administered for up to 11 days to cultured cells grown on Silastic membranes. Single cells were then removed from the membrane and subjected to 1 Hz oscillatory stretches up to 10% of the in situ cell length. These oscillations reduced stiffness by 66% in all groups (P < 0.05). Chronically strained cells recovered stiffness three times more rapidly than unstrained cells, while the strain gradient had no effect. The stiffness recovery in unstrained cells was completely inhibited by the MLCK inhibitor ML-7, but recovery in strained cells exhibiting increased MLCK was slightly inhibited. These data suggest that chronic strain leads to enhanced recovery from acute stretch, which may be attributable to the strain-induced increases in MLCK. This may also explain in part the more rapid renarrowing of activated airways following DI in asthma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.