The genetic basis of flower colour evolution provides a useful system to address the debate over the relative contribution of regulatory vs. functional mutations in evolution. The relative importance of these two categories depends on the type of flower colour transition and the genes involved in those transitions. These differences reflect differences in the degree of deleterious pleiotropy associated with functional inactivation of various anthocyanin pathway genes. Our findings illustrate how generalized statements regarding the contributions of regulatory and functional mutations to broad categories of traits, such as morphological vs. physiological, ignore differences among traits within categories and in doing so overlook important factors determining the relative importance of regulatory and functional mutations.
Plants have a sophisticated system for sensing and responding to their light environment. The light responses of populations and species native to different habitats show adaptive variation; understanding the mechanisms underlying photomorphogenic variation is therefore of significant interest. In Arabidopsis thaliana , phytochrome B (PHYB) is the dominant photoreceptor for red light and plays a major role in white light. Because PHYB has been proposed as a candidate gene for several quantitative trait loci (QTLs) affecting light response, we have investigated sequence and functional variation in Arabidopsis PHYB . We examined PHYB sequences in 33 A. thaliana individuals and in the close relative Arabidopsis lyrata . From 14 nonsynonymous polymorphisms, we chose 5 for further study based on previous QTL studies. In a larger collection of A. thaliana accessions, one of these five polymorphisms, I143L, was associated with variation in red light response. We used transgenic analysis to test this association and confirmed experimentally that natural PHYB polymorphisms cause differential plant responses to light. Furthermore, our results show that allelic variation of PHYB activity is due to amino acid rather than regulatory changes. Together with earlier studies linking variation in light sensitivity to photoreceptor genes, our work suggests that photoreceptors may be a common target of natural selection.
Distinct floral pollination syndromes have emerged multiple times during the diversification of flowering plants. For example, in western North America, a hummingbird pollination syndrome has evolved more than 100 times, generally from within insect-pollinated lineages. The hummingbird syndrome is characterized by a suite of floral traits that attracts and facilitates pollen movement by hummingbirds, while at the same time discourages bee visitation. These floral traits generally include large nectar volume, red flower colour, elongated and narrow corolla tubes and reproductive organs that are exerted from the corolla. A handful of studies have examined the genetic architecture of hummingbird pollination syndrome evolution. These studies find that mutations of relatively large effect often explain increased nectar volume and transition to red flower colour. In addition, they suggest that adaptive suites of floral traits may often exhibit a high degree of genetic linkage, which could facilitate their fixation during pollination syndrome evolution. Here, we explore these emerging generalities by investigating the genetic basis of floral pollination syndrome divergence between two related Penstemon species with different pollination syndromes—bee-pollinated P. neomexicanus and closely related hummingbird-pollinated P. barbatus . In an F 2 mapping population derived from a cross between these two species, we characterized the effect size of genetic loci underlying floral trait divergence associated with the transition to bird pollination, as well as correlation structure of floral trait variation. We find the effect sizes of quantitative trait loci for adaptive floral traits are in line with patterns observed in previous studies, and find strong evidence that suites of floral traits are genetically linked. This linkage may be due to genetic proximity or pleiotropic effects of single causative loci. Interestingly, our data suggest that the evolution of floral traits critical for hummingbird pollination was not constrained by negative pleiotropy at loci that show co-localization for multiple traits.
Gene degeneration or loss can significantly contribute to phenotypic diversification, but may generate genetic constraints on future evolutionary trajectories, potentially restricting phenotypic reversal. Such constraints may manifest as directional evolutionary trends when parallel phenotypic shifts consistently involve gene degeneration or loss. Here, we demonstrate that widespread parallel evolution in Penstemon from blue to red flowers predictably involves the functional inactivation and degeneration of the enzyme flavonoid 3',5'-hydroxylase (F3'5'H), an anthocyanin pathway enzyme required for the production of blue floral pigments. Other types of genetic mutations do not consistently accompany this phenotypic shift. This pattern may be driven by the relatively large mutational target size of degenerative mutations to this locus and the apparent lack of associated pleiotropic effects. The consistent degeneration of F3'5'H may provide a mechanistic explanation for the observed asymmetry in the direction of flower color evolution in Penstemon: Blue to red transitions are common, but reverse transitions have not been observed. Although phenotypic shifts in this system are likely driven by natural selection, internal constraints may generate predictable genetic outcomes and may restrict future evolutionary trajectories.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.