BackgroundSingle-center studies suggest that neonatal acute kidney injury (AKI) is associated with poor outcomes. However, inferences regarding the association between AKI, mortality, and hospital length of stay are limited due to the small sample size of those studies. In order to determine whether neonatal AKI is independently associated with increased mortality and longer hospital stay, we analyzed the Assessment of Worldwide Acute Kidney Epidemiology in Neonates (AWAKEN) database.MethodsAll neonates admitted to 24 participating neonatal intensive care units from four countries (Australia, Canada, India, United States) between January 1 and March 31, 2014, were screened. Of 4273 neonates screened, 2022 (47·3%) met study criteria. Exclusion criteria included: no intravenous fluids ≥48 hours, admission ≥14 days of life, congenital heart disease requiring surgical repair at <7 days of life, lethal chromosomal anomaly, death within 48 hours, inability to determine AKI status or severe congenital kidney abnormalities. AKI was defined using a standardized definition —i.e., serum creatinine rise of ≥0.3 mg/dL (26.5 mcmol/L) or ≥50% from previous lowest value, and/or if urine output was <1 mL/kg/h on postnatal days 2 to 7.FindingsIncidence of AKI was 605/2022 (29·9%). Rates varied by gestational age groups (i.e., ≥22 to <29 weeks =47·9%; ≥29 to <36 weeks =18·3%; and ≥36 weeks =36·7%). Even after adjusting for multiple potential confounding factors, infants with AKI had higher mortality compared to those without AKI [(59/605 (9·7%) vs. 20/1417 (1·4%); p< 0.001; adjusted OR=4·6 (95% CI=2·5–8·3); p=<0·0001], and longer hospital stay [adjusted parameter estimate 8·8 days (95% CI=6·1–11·5); p<0·0001].InterpretationNeonatal AKI is a common and independent risk factor for mortality and longer hospital stay. These data suggest that neonates may be impacted by AKI in a manner similar to pediatric and adult patients.FundingUS National Institutes of Health, University of Alabama at Birmingham, Cincinnati Children’s, University of New Mexico.
Focal segmental glomerulosclerosis (FSGS) is a prevalent glomerular disease characterized by proteinuria, progression to end stage renal disease and recurrence of proteinuria after kidney transplantation in approximately one third of patients. It has been suggested that rituximab might treat recurrent FSGS through an unknown mechanism. Rituximab recognizes CD20 on B-lymphocytes but might also bind sphingomyelin-phosphodiesterase-acid-like-3b (SMPDL-3b) and regulates acid-sphyngomyelinase (ASMase) activity. We hypothesized that rituximab prevents recurrent FSGS and preserves podocyte SMPDL-3b expression. We studied 41 patients at high risk for recurrent FSGS, 27 of whom were treated with rituximab at time of kidney transplant. Incidence of nephrotic-range proteinuria and change in estimated glomerular filtration rate (ΔeGFR) were analyzed. SMPDL-3b immunostaining was performed in post-reperfusion kidney biopsies. SMPDL-3b protein, ASMase activity, and cytoskeleton remodeling were studied in cultured normal human podocytes that had been exposed to patient sera with or without rituximab. Rituximab treatment was associated with lower incidence of post-transplant proteinuria and decreased ΔeGFR. The number of SMPDL-3b+ podocytes in post-reperfusion biopsies was reduced in patients who developed recurrent FSGS. Rituximab partially prevented SMPDL-3b and ASMase downregulation that was observed in podocytes treated with the sera of patients with recurrent FSGS. Either SMPDL-3b overexpression or treatment with rituximab prevented disruption of the actin cytoskeleton and podocyte apoptosis induced by patient sera. This effect was diminished in cultured podocytes where the gene encoding SMPDL-3b was silenced. Our study suggests that treatment of high-risk patients with rituximab at time of kidney transplant might prevent recurrent FSGS by modulating podocyte function in an SMPDL-3b–dependent manner.
Until now oligonephropathy to indicate "too few nephrons" has been associated with intrauterine growth restriction and experimentally induced abnormalities of renal development. The purpose of this study was to determine whether there is evidence of abnormal postnatal glomerulogenesis in extremely low birth weight preterm infants. Renal autopsy tissue was studied by computer-assisted morphometry from 56 extremely premature infants (birth weight < or = 1000 g) and 10 fullterm infants as controls. Preterm infants were divided into two groups (short survival < or = 40 days vs. long survival > or = 40 days). Each group was subdivided into those with renal failure (RF) and those with normal renal function. Forty-two of 56 preterm infants (75%) were adequate for gestational age. Glomerulogenesis as measured by radial glomerular counts (RGC) was markedly decreased in all preterm infants as compared to term controls and correlated significantly with gestational age (r = 0.87; P < 0.001). Active glomerulogenesis with "basophilic S-shaped bodies" was absent in longer surviving preterm and all term infants. RGC of preterm infants surviving > or =40 days with RF were significantly less than RGC of those with long survival and no RF (P < 0.001). Only this latter group demonstrated increased glomerular size as measured by mesangial tuft area and Bowman's capsule area compared to all other groups (P < 0.001). The kidney continues to form postnatally in preterm neonates, but glomerulogenesis ceases after 40 days. Moreover, it is further inhibited by RF. Compensatory mechanisms in longer surviving preterm infants include glomerular hypertrophy and mesangial proliferation that could lead to hyperfiltration.
Advances in the ability to identify, evaluate, and care for infants with hypertension, coupled with advances in the practice of Neonatology, have led to an increased awareness of hypertension in modern neonatal intensive care units. This review will present updated data on blood pressure values in neonates, with a focus on the changes that occur over the first days and weeks of life in both term and preterm infants. Optimal blood pressure measurement techniques as well as the differential diagnosis of hypertension in the neonate and older infants will be discussed. Recommendations for the optimal immediate and long-term evaluation and treatment, including potential treatment parameters, will be presented. We will also review additional information on outcome that has become available over the past decade.
Infants born prematurely at <37 weeks' gestation account for over 80% of infants weighing <2,500 g at birth-low birth weight (LBW) infants. This designation remains the surrogate marker for developmental origins of adult disease. Landmark studies spanning four decades have shown that individuals born with a LBW are more likely to develop cardiovascular and renal disease in later life, which is believed to be related to 'developmental programming' of such adult disease during vulnerable periods of growth in utero and in the early postnatal period. There has long been ambiguity regarding the distinction between infants with intrauterine growth restriction and preterm infants since both show a low nephron endowment that is associated with subsequent hypertension and chronic kidney disease. Knowledge is growing specific to the preterm infant and the developmental associations of being born preterm with the interruption of normal organogenesis relative to the vascular tree and kidney. Both systems develop by branching morphogenesis and interruptions lead to considerable deficits in their structure and function. These developmental aberrations can lead to endothelial dysfunction, hypertension, proteinuria and metabolic abnormalities that persist throughout life. This Review will examine the effect of preterm birth on the development of cardiovascular and kidney disease in later life and will also discuss potential early interventions to alter the progression of disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.