Low free T levels in men are associated with age-related cognitive decline and increased risk for neurotoxicity, resulting in disease. The mechanisms underlying these observations remain poorly defined. Although rapid, androgen receptor-dependent activation of ERK has been postulated as a neurotrophic and neuroprotective mechanism, actions of T metabolites such as 5α-androstane-3α,17β-diol (3α-diol) may also be involved. We investigated the influence of 3α-diol on the induction of ERK phosphorylation in SH-SY5Y human female neuroblastoma cells and primary cortical neurons from male and female mice. In SH-SY5Y cells, ERK phosphorylation was induced by 10 nM DHT, epidermal growth factor, hydrogen peroxide (HO), and acetylcholine. The addition of 10 nM 3α-diol, which did not itself activate ERK, significantly inhibited ERK phosphorylation induced by DHT, epidermal growth factor, or HO, but not acetylcholine. In both SH-SY5Y cells and primary cortical neurons, prolonged ERK phosphorylation and caspase-3 cleavage resulting from amyloid β-peptide 1-42 (Aβ42) exposure were inhibited by cotreatment with 3α-diol. 3α-diol also reduced the loss in cellular viability induced by Aβ42 or HO in SH-SY5Y cells. These data suggest that T-mediated neuroprotection may occur via two distinct but complementary mechanisms: an initial rapid activation of ERK phosphorylation, followed by modulation via 3α-diol of the potentially adverse consequences of prolonged ERK activation.
Autism spectrum disorder (ASD) is a class of neurodevelopmental disorders that affects males more frequently than females. Numerous genetic and environmental risk factors have been suggested to contribute to the development of ASD. However, no one factor can adequately explain either the frequency of the disorder or the male bias in its prevalence. Gonadal, thyroid, and glucocorticoid hormones all contribute to normal development of the brain, hence perturbations in either their patterns of secretion or their actions may constitute risk factors for ASD. Environmental factors may contribute to ASD etiology by influencing the development of neuroendocrine and neuroimmune systems during early life. Emerging evidence suggests that the placenta may be particularly important as a mediator of the actions of environmental and endocrine risk factors on the developing brain, with the male being particularly sensitive to these effects. Understanding how various risk factors integrate to influence neural development may facilitate a clearer understanding of the etiology of ASD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.