Nickel is an essential metal for a number of bacterial species that have developed systems for acquiring, delivering and incorporating the metal into target enzymes, and controlling the levels of nickel in cells to avoid toxic effects. As with other transition metals, these trafficking systems must be able to distinguish between the desired metal and other transition metal ions with similar physical and chemical properties. Because there are few enzymes (targets) that require nickel for activity (e.g., E. coli traffics nickel for hydrogenases made under anaerobic conditions and H. pylori requires nickel for hydrogenase and urease that are essential for acid viability), the ‘traffic pattern’ for nickel is relatively simple, and nickel trafficking therefore presents an opportunity to examine a system for the mechanisms that are used to distinguish nickel from other metals. In this review, we describe the details known for examples of uptake permeases, metallochaperones and proteins involved in metallocenter assembly, and nickel metalloregulators. We also illustrate the variety of mechanisms, including molecular recognition in the case of NikA protein and examples of allosteric regulation for HypA, NikR and RcnR, employed to generate specific biological responses to nickel ions.
Escherichia coli RcnR (resistance to cobalt and nickel regulator, EcRcnR), is a metal-responsive repressor of the genes encoding the Ni(II) and Co(II) exporter proteins RcnAB by binding to PrcnAB. DNA-binding affinity is weakened when the cognate ions Ni(II) or Co(II) bind to EcRcnR in a six-coordinate site that features a (N/O)5S ligand donor-atom set in distinct sites: while both metal ions are bound by the N-terminus, Cys35, and His64, Co(II) is additionally bound by His3. On the other hand, the non-cognate Zn(II) and Cu(I) ions feature a lower coordination number, have a solvent-accessible binding site, and coordinate protein ligands that do not include the N-terminal amine. A molecular model of apo-EcRcnR suggested potential roles for Glu34 and Glu63 in binding Ni(II) and Co(II) to EcRcnR. The roles of Glu34 and Glu63 in metal binding, metal selectivity and function were therefore investigated using a structure/function approach. X-ray absorption spectroscopy (XAS) was used to assess the structural changes in the Ni(II), Co(II), and Zn(II) binding sites of Glu → Ala and Glu → Cys variants at both positions. The effect of these structural alterations on the regulation of PrcnA by EcRcnR in response to metal binding was explored using LacZ reporter assays. These combined studies indicate that while Glu63 is a ligand for both metal ions, Glu34 is a ligand for Co(II) but possibly not for Ni(II). The Glu34 variants affect the structure of the cognate metal sites, but they have no effect on the transcriptional response. In contrast, the Glu63 variants affect both the structure and transcriptional response, although they do not completely abolish the function of EcRcnR. The structure of the Zn(II) site is not significantly perturbed by any of the Glu variations. The spectroscopic and functional data obtained on the mutants were used to calculate models of the metal site structures of EcRcnR bound to Ni(II), Co(II) and Zn(II). The results are interpreted in terms of a switch mechanism, in which a subset of the metal binding ligands is responsible for the allosteric response required for DNA release.
Intramolecular four-way junctions are structures present during homologous recombination, repair of double stranded DNA breaks, and integron recombination. Because of the wide range of biological processes four-way junctions are involved in, understanding how and under what conditions these structures form is critical. In this work, we used a combination of spectroscopic and calorimetric techniques to present a complete thermodynamic description of the unfolding of a DNA four-way junction (FWJ) and its appropriate control stem-loop motifs (Dumbbell, GAAATT-Hp, CTATC-Hp, GTGC-Hp, and GCGC-Hp). The overall results show that the four-way junction increases the cooperative unfolding of its stems, although the reason for this is unclear, as the arms do not unfold as coaxial stacks, and thus its melting behavior cannot be accurately described by its control molecules. This is in contrast to what has been seen for two- and three-way junctions. In addition, the lack of base stacking and the ΔH/ΔH ratio seen at low salt indicate the four-way junction exists as a mixture of conformations, one of which is most likely the open-X structure which has unpaired bases at the junction. This was confirmed by single value decomposition of CD and UV spectra. This indicates that at low salt there is a third spectroscopically distinct species, while at higher salt there are only two species, folded and unfolded. Based on the enthalpy, Δn, and Δn, the dominant folded structure at high salt is most likely the antiparallel stacked-X structure.
Oligonucleotide-directed triple helix formation has been recognized as a potential tool for targeting genes with high specificity. Cystosine methylation in the 5' position is both ubiquitous and a stable regulatory modification, which could potentially stabilize triple helix formation. In this work, we have used a combination of calorimetric and spectroscopic techniques to study the intramolecular unfolding of four triplexes and two duplexes. We used the following triplex control sequence, named Control Tri, d(AGAGACTCTCTCTCTCT), where C are loops of five cytosines. From this sequence, we studied three other sequences with dC → d(mC) substitutions on the Hoogsteen strand (2MeH), Crick strand (2MeC) and both strands (4MeHC). Calorimetric studies determined that methylation does increase the thermal and enthalpic stability, leading to an overall favorable free energy, and that this increased stability is cumulative, i.e. methylation on both the Hoogsteen and Crick strands yields the largest favorable free energy. The differential uptake of protons, counterions and water was determined. It was found that methylation increases cytosine protonation by shifting the apparent pK value to a higher pH; this increase in proton uptake coincides with a release of counterions during folding of the triplex, likely due to repulsion from the increased positive charge from the protonated cytosines. The immobilization of water was not affected for triplexes with methylated cytosines on their Hoogsteen or Crick strands, but was seen for the triplex where both strands are methylated. This may be due to the alignment in the major groove of the methyl groups on the cytosines with the methyl groups on the thymines which causes an increase in structural water along the spine of the triplex.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.