When two superimposed surfaces of dots move in different directions, the perceived directions are shifted away from each other. This perceptual illusion has been termed direction repulsion and is thought to be due to mutual inhibition between the representations of the two directions. It has further been shown that a speed difference between the two surfaces attenuates direction repulsion. As speed and direction are both necessary components of representing motion, the reduction in direction repulsion can be attributed to the additional motion information strengthening the representations of the two directions and thus reducing the mutual inhibition. We tested whether bottom-up attention and top-down task demands, in the form of color differences between the two surfaces, would also enhance motion processing, reducing direction repulsion. We found that the addition of color differences did not improve direction discrimination and reduce direction repulsion. However, we did find that adding a color difference improved performance on the task. We hypothesized that the performance differences were due to the limited presentation time of the stimuli. We tested this in a follow-up experiment where we varied the time of presentation to determine the duration needed to successfully perform the task with and without the color difference. As we expected, color segmentation reduced the amount of time needed to process and encode both directions of motion. Thus we find a dissociation between the effects of attention on the speed of processing and conscious perception of direction. We propose four potential mechanisms wherein color speeds figure-ground segmentation of an object, attentional switching between objects, direction discrimination and/or the accumulation of motion information for decision-making, without affecting conscious perception of the direction. Potential neural bases are also explored.
Often, the brain receives more sensory input than it can process simultaneously. Spatial attention helps overcome this limitation by preferentially processing input from a behaviorally-relevant location. Recent neuropsychological and psychophysical studies suggest that attention is deployed to near-hand space much like how the oculomotor system can deploy attention to an upcoming gaze position. Here we provide the first neuronal evidence that the presence of a nearby hand enhances orientation selectivity in early visual processing area V2. When the hand was placed outside the receptive field, responses to the preferred orientation were significantly enhanced without a corresponding significant increase at the orthogonal orientation. Consequently, there was also a significant sharpening of orientation tuning. In addition, the presence of the hand reduced neuronal response variability. These results indicate that attention is automatically deployed to the space around a hand, improving orientation selectivity. Importantly, this appears to be optimal for motor control of the hand, as opposed to oculomotor mechanisms which enhance responses without sharpening orientation selectivity. Effector-based mechanisms for visual enhancement thus support not only the spatiotemporal dissociation of gaze and reach, but also the optimization of vision for their separate requirements for guiding movements.
The visual system is split into two processing streams: a ventral stream that receives color and form information and a dorsal stream that receives motion information. Each stream processes that information hierarchically, with each stage building upon the previous. In the ventral stream this leads to the formation of object representations that ultimately allow for object recognition regardless of changes in the surrounding environment. In the dorsal stream, this hierarchical processing has classically been thought to lead to the computation of complex motion in three dimensions. However, there is evidence to suggest that there is integration of both dorsal and ventral stream information into motion computation processes, giving rise to intermediate object representations, which facilitate object selection and decision making mechanisms in the dorsal stream. First we review the hierarchical processing of motion along the dorsal stream and the building up of object representations along the ventral stream. Then we discuss recent work on the integration of ventral and dorsal stream features that lead to intermediate object representations in the dorsal stream. Finally we propose a framework describing how and at what stage different features are integrated into dorsal visual stream object representations. Determining the integration of features along the dorsal stream is necessary to understand not only how the dorsal stream builds up an object representation but also which computations are performed on object representations instead of local features.
Visual processing is known to be enhanced at the end point of eye movements. Feedback within the oculomotor system has been shown to drive these alterations in visual processing. However, we do not simply view the world; we also reach out and interact using our hands. Consequently, it is not surprising that visual processing has also been shown to be altered in near-hand space. A growing body of work documents a myriad of alterations in near-hand visual processing, with little consensus on the neural underpinnings of the effect of the hand. Since movement of the eyes and hands is governed by parallel frontoparietal networks and since within the oculomotor system feedback from these motor control regions has been shown to drive enhanced visual processing at saccade end points, it is plausible that a similar feedback mechanism is at play in near-hand improvements in visual processing. Here, we compare and contrast oculomotor-driven and hand-driven changes in visual processing and provide support for the hypothesis that feedback within the reaching and grasping systems enhances visual processing near the hand in a novel way.
Direction repulsion is a perceptual illusion in which the directions of two superimposed surfaces are repulsed away from the real directions of motion. The repulsion is reduced when the surfaces differ in dorsal stream features such as speed. We have previously shown that segmenting the surfaces by color, a ventral stream feature, did not affect repulsion but instead reduced the time needed to process both surfaces. The current study investigated whether segmenting two superimposed surfaces by a feature coprocessed with direction in the dorsal stream (i.e., speed) would also reduce processing time. We found that increasing the speed of one or both surfaces reduced direction repulsion. Since color segmentation does not affect direction repulsion, these results suggest that motion processing integrates speed and direction prior to forming an object representation that includes ventral stream features such as color. Like our previous results for differences in color, differences in speed also decreased processing time. Therefore, the reduction in processing time derives from a later processing stage where both ventral and dorsal features bound into the object representations can reduce the time needed for decision making when those features differentiate the superimposed surfaces from each other.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.