Studies of the ultraviolet and visible emission from an atmospheric pressure air plasma and its interaction with two carbon-based ablative materials were performed in an inductively coupled plasma torch. These experiments were conducted at a plate power of 40 kW, which produced an air plasma in local thermodynamic equilibrium with a maximum temperature of approximately 6200 K, corresponding to a specific enthalpy of 16.4 MJ∕kg. Three techniques were developed to measure the ablator surface temperature. Recession rates and product species profiles were measured for two different materials (ASTERM™ and carbon-bonded carbon fiber) at a plasma velocity of approximately 20 m∕s. Measured surface temperatures were in the range of 2100 to 2300 K, and corresponding hot-wall heat fluxes were approximately 1.4 MW∕m 2 . Spatially resolved profiles of the main species detected in the boundary layer were recorded, and they showed evidence of strong coupling between the ablated material and the freestream.
Cyclic tetrapeptides are a class of natural products that have been shown to have broad ranging biological activities and good pharmacokinetic properties. In order to synthesise these highly strained compounds a ring contraction strategy had previously been reported. This strategy was further optimised and a suite of techniques, including the Edman degradation and mass spectrometry/mass spectrometry, were developed to enable characterisation of cyclic tetrapeptide isomers. An NMR solution structure of a cyclic tetrapeptide was also generated. To illustrate the success of this strategy a library of cyclic tetrapeptides was synthesised.
This paper concerns the 3D simulation of corona discharge using high performance computing (HPC) managed with the message passing interface (MPI) library. In the field of finite volume methods applied on non-adaptive mesh grids and in the case of a specific 3D dynamic benchmark test devoted to streamer studies, the great efficiency of the iterative R&B SOR and BiCGSTAB methods versus the direct MUMPS method was clearly demonstrated in solving the Poisson equation using HPC resources. The optimization of the parallelization and the resulting scalability was undertaken as a function of the HPC architecture for a number of mesh cells ranging from 8 to 512 million and a number of cores ranging from 20 to 1600. The R&B SOR method remains at least about four times faster than the BiCGSTAB method and requires significantly less memory for all tested situations. The R&B SOR method was then implemented in a 3D MPI parallelized code that solves the classical first order model of an atmospheric pressure corona discharge in air. The 3D code capabilities were tested by following the development of one, two and four coplanar streamers generated by initial plasma spots for 6 ns. The preliminary results obtained allowed us to follow in detail the formation of the tree structure of a corona discharge and the effects of the mutual interactions between the streamers in terms of streamer velocity, trajectory and diameter. The computing time for 64 million of mesh cells distributed over 1000 cores using the MPI procedures is about 30 min ns −1 , regardless of the number of streamers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.