Terrestrial net primary production ~PP) is sensitive to a number of controls, including aspects of climate, topography, soils, plant and microbial characteristics, disturbance, and anthropogenic impacts. Yet, at
Agriculture is being challenged to provide food, and increasingly fuel, for an expanding global population. Producing bioenergy crops on marginal lands-farmland suboptimal for food cropscould help meet energy goals while minimizing competition with food production. However, the ecological costs and benefits of growing bioenergy feedstocks-primarily annual grain crops-on marginal lands have been questioned. Here we show that perennial bioenergy crops provide an alternative to annual grains that increases biodiversity of multiple taxa and sustain a variety of ecosystem functions, promoting the creation of multifunctional agricultural landscapes. We found that switchgrass and prairie plantings harbored significantly greater plant, methanotrophic bacteria, arthropod, and bird diversity than maize. Although biomass production was greater in maize, all other ecosystem services, including methane consumption, pest suppression, pollination, and conservation of grassland birds, were higher in perennial grasslands. Moreover, we found that the linkage between biodiversity and ecosystem services is dependent not only on the choice of bioenergy crop but also on its location relative to other habitats, with local landscape context as important as crop choice in determining provision of some services. Our study suggests that bioenergy policy that supports coordinated land use can diversify agricultural landscapes and sustain multiple critical ecosystem services.energy policy | greenhouse gas mitigation I n agricultural landscapes, balancing the provisioning of food and energy with maintenance of biodiversity and ecosystem functions is a global challenge. To avoid impacts on food production, attention is increasingly being focused on the potential for marginal lands to support bioenergy production (1). Marginal lands, those suboptimal for food production, may consist of relatively small areas within generally productive landscapes or larger regions where conditions generally limit crop productivity. However, there is increasing recognition that these lands are already performing a variety of useful functions, and their conversion to bioenergy cropping could reduce these services. For example, in the north central United States, rising commodity prices are predicted to bring marginal croplands-including Conservation Reserve Program lands-into annual crop production with negative impacts on wildlife habitat and water quality (2, 3). With 2013 corn plantings at recent record highs (4) and new reports of grassland and wetland conversion to cropland (5, 6), this may be occurring already.An alternative to annual cropping is conversion of marginal croplands to perennial, cellulosic crops for bioenergy. Although current US biofuel production centers on grain ethanol derived from annual monocultures of maize (Zea mays), this situation could change with full implementation of the 2007 US Energy Independence and Security Act (7), which calls for increased production of cellulosic biofuels. In the Midwest United States, perennial grasses a...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.