Retinal degenerations such as Retinitis Pigmentosa remain difficult to treat given the diverse array of genes responsible for their aetiology. Rather than concentrate on specific genes, our focus is on identifying therapeutic avenues for the treatment of retinal disease that target general survival mechanisms or pathways. Norgestrel is a synthetic progestin commonly used in hormonal contraception. Here, we report a novel anti-apoptotic role for Norgestrel in diseased mouse retinas in vivo. Dosing with Norgestrel protects photoreceptor cells from undergoing apoptosis in two distinct models of retinal degeneration; the light damage model and the Pde6b(rd10) model. Photoreceptor rescue was assessed by analysis of cell number, structural integrity and function. Improvements in cell survival of up to 70% were achieved in both disease models, indicating that apoptosis had been halted or at least delayed. A speculative mechanism of action for Norgestrel involves activation of survival pathways in the retina. Indeed, Norgestrel increases the expression of basic fibroblast growth factor which is known to both promote cell survival and inhibit apoptosis. In summary, our results demonstrate significant protection of photoreceptor cells which may be attributed to Norgestrel mediated activation of endogenous survival pathways within the retina.
Recent work has highlighted the importance of protein posttranslational modifications such as phosphorylation (enzymatic) and nitrosylation (nonenzymatic) in the early stages of apoptosis. In this study, we have investigated the levels of protein carbonylation, a nonenzymatic protein modification that occurs in conditions of cellular oxidative stress, during etopside-induced apoptosis of HL60 cells. Within 1 h of VP16 treatment, a number of proteins underwent carbonylation due to oxidative stress. This was inhibited by the antioxidant N-acetyl-L-cysteine. Among the proteins found to be carbonylated were glycolytic enzymes. Subsequently, we found that the rate of glycolysis was significantly reduced, probably due to a carbonylation mediated reduction in enzymatic activity of glycolytic enzymes. Our work demonstrates that protein carbonylation can be rapidly induced through cytotoxic drug treatment and may specifically inhibit the glycolytic pathway. Given the importance of glycolysis as a source of cellular ATP, this has severe implications for cell function.
Basic fibroblast growth factor (bFGF) has proven neuroprotective efficacy in the rodent retina against a diverse array of injurious stimuli. However, there is no consensus to date as to the molecular mechanisms underlying this neuroprotection. The study presented herein demonstrates increased expression of endogenous bFGF in the albino mouse retina in response to acute exposure to sublethal levels of light stress. The increased expression correlates with significant photoreceptor protection from light damage. The neuroprotection is likely to be mediated by bFGF as we demonstrate that a shorter exposure to bright light stress that does not up‐regulate bFGF fails to protect photoreceptors from light damage. Furthermore, intravitreal bFGF injection into the retina of mice 3 h prior to light damage affords almost complete photoreceptor protection from light‐induced degeneration. In addition, injected bFGF induces the activation of protein kinase B and extracellular signal‐regulated kinase 1/2 signalling which correlate directly with the pathways we find to be activated in response to light stress and up‐regulated bFGF. Moreover, we demonstrate that both bright light pre‐conditioning and intravitreal bFGF injection result in dramatic increases in levels of inactive glycogen synthase kinase 3β and cyclic AMP response element binding protein phosphorylation indicating a potential mechanism by which bFGF promotes survival of photoreceptors in vivo.
Rosiglitazone is a member of the thiazolidinedione family of synthetic peroxisome proliferator‐activated receptor (PPAR) agonists. It is a selective ligand of the PPARγ subtype and functions by regulating the transcription of insulin‐responsive genes. A screen of FDA‐approved compounds identified rosiglitazone as a novel anti‐apoptotic agent in retinal cells both in vitro and in vivo, functioning as a neuroprotectant in response to oxidative and calcium stress. We have found that the likely mechanism of action is via increased protein expression of the antioxidant enzymes superoxide dismutase 2 (SOD‐2) and sestrin‐1, boosting antioxidant defences. Transcription of both genes appears to be mediated by PPARγ as their up‐regulation is reversed by the PPARγ antagonist GW9662 and proliferator hormone response elements were found in the putative promoter regions of mouse SOD‐2 and sestrin‐1. However, further investigation revealed that p53 expression was also induced in response to rosiglitazone and chromatin immunoprecipitation assays confirm that it is a bona fide target of PPARγ. Furthermore, inhibition of p53 partially blocks the observed increase in SOD‐2 and sestrin‐1 expression indicating that p53 expression is upstream of both antioxidants. We conclude that rosiglitazone may increase cell survival in retinal diseases and potentially other neuronal diseases in which oxidative stress is a key factor.
Although there is substantial evidence supporting the neuroprotective efficacy of basic fibroblast growth factor (bFGF) in the rodent retina there is no consensus to date as to the protective mechanism involved. We hypothesise that bFGF can assert its neuroprotective effects directly on mouse photoreceptors transduced via the activation of specific intracellular signalling pathways. In mouse photoreceptor-derived 661W cells, bFGF promoted a rapid inactivation of glycogen synthase kinase 3b (GSK3b) by phosphorylation at Ser9.The effects of bFGF on GSK3b were dependent on protein kinase A (PKA) activation, as inhibition of this pathway blocked inactivation. Furthermore, bFGF protection against oxidative stress was dependent on PKA inactivation of GSK3b as PKA inhibition attenuated bFGF-induced protection. Furthermore, transfection of cells with mutant dominant negative GSK3bS9A that cannot be phosphorylated on Ser9 also abrogated neuroprotection. Activation of the transcription factor cAMP-response element binding protein (CREB) and subsequent up-regulation of Bcl-2 in response to bFGF was also dependent on PKA as inhibition with H-89 attenuated increased pCREB levels and Bcl-2 expression. These results indicate that the protective efficacy of bFGF in mouse photoreceptors involves PKA-dependent inactivation of GSK3b and subsequent up-regulation of Bcl-2 via CREB activation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.