International audienceProtecting or restoring aquatic ecosystems in the face of growing anthropogenic pressures requires an understanding of hydrological and biogeochemical functioning across multiple spatial and temporal scales. Recent technological and methodological advances have vastly increased the number and diversity of hydrological, bio-geochemical, and ecological tracers available, providing potentially powerful tools to improve understanding of fundamental problems in ecohydrology, notably: 1. Identifying spatially explicit flowpaths, 2. Quantifying water residence time, and 3. Quantifying and localizing biogeochemical transformation. In this review, we synthesize the history of hydrological and biogeochemical theory, summarize modern tracer methods, and discuss how improved understanding of flowpath, residence time, and biogeochemical transformation can help ecohydrology move beyond description of site-specific heterogeneity. We focus on using multiple tracers with contrasting characteristics (crossing proxies) to infer ecosystem functioning across multiple scales. Specifically, we present how crossed proxies could test recent ecohydrological theory, combining the concepts of hotspots and hot moments with the Damköhler number in what we call the HotDam framework
[1] Simultaneous observations, across multiple spatial and temporal scales, are needed to understand the complex interactions between hydrological and biogeochemical processes in catchments and the primary controls on NO 3 À availability and mobility. This paper addresses these issues by using data collected from a detailed field experiment, carried out on two topographically different hillslopes (one steep and the other flat) located within an agricultural catchment in Western Australia. Continuous hydrometric data and measurements of chemical tracers, geochemical parameters, and NO 3 À concentrations taken from the shallow perched aquifer across riparian, midslope, and upland locations were analyzed and interpreted through a simple process-based numerical model of transport and reaction. The NO 3 À concentration data indicated that the temporal and spatial patterns of NO 3 À concentrations within the hillslopes are linked to the state of hydrological connectivity of the three landscape units as the shallow perched aquifer developed during the winter. Significant NO 3 À attenuation occurs within the riparian zones after the transport of NO 3 À from midslope sources begins. Application of a mixing model, which partitions the riparian zones into three water source components, and the numerical model of NO 3 À transport and reaction indicates that different mechanisms, dilution in the steep hillslope and denitrification in the flat hillslope, are responsible for much of the observed NO 3 À attenuation in the riparian zones. In this way, this work highlights the importance of hillslope topography in determining the relative roles of transport and reaction in NO 3 À attenuation and export from riparian zones. The experimental results also supported the use of the Damköhler number, a simple dimensionless number that is a measure of the competition between transport and reaction processes, which allowed a favorable comparison of our findings with previous results published in the literature for different geographical settings.Citation: Ocampo, C. J., C. E. Oldham, and M. Sivapalan (2006), Nitrate attenuation in agricultural catchments: Shifting balances between transport and reaction, Water Resour. Res., 42, W01408,
Sustaining natural levels of base flow is critical to maintaining ecological function as stream catchments are urbanized. Stream base flow responds variably to urbanization. Base flow or water tables rise in some locations, fall in others, or remain constant. This variable response is the result of the array of natural (e.g., physiographic setting and climate) and anthropogenic (e.g., urban development and infrastructure) factors that influence hydrology. Perhaps because of this complexity, few simple tools exist to assist managers to predict baseflow change in their local urban area. We address this management need by presenting a decision-support tool that can be used to predict the likelihood and direction of baseflow change based on the natural vulnerability of the landscape and aspects of urban development. When the tool indicates a likely increase or decrease, managers can use it for guidance toward strategies that can reduce or increase groundwater recharge, respectively. An equivocal result from application of the tool suggests the need for a detailed water balance. The tool is embedded in an adaptivemanagement framework that encourages managers to define their ecological objectives, assess the vulnerability of their ecological objectives to changes in water-table height, and monitor baseflow responses to urbanization. We tested our framework with 2 different case studies: Perth, Western Australia, Australia and Baltimore, Maryland, USA. Together, these studies show how predevelopment water-table height, climate, and geology together with aspects of urban infrastructure (e.g., stormwater practices, leaky pipes) interacted such that urbanization led to rising (Perth) and falling (Baltimore) base flow. Greater consideration of subsurface components of the water cycle will help to protect and restore the ecology of urban fresh waters.
Horizontal exchange flows driven by destabilising buoyancy fluxes through the surface waters of lakes and coastal regions of oceans are important in understanding the transport of nutrients, micro-organisms and pollutants from littoral to pelagic zones. Our interest here is in the discharge flow driven by cooling or destabilising forcing at the water surface in a water body with variable depth due to sloping bottom topography. Flow visualisation studies and measurements in a laboratory model enabled us to develop scaling arguments to predict the dependency of discharge upon surface forcing and the angle of bottom slope. The results were used to interpret both the laboratory measurements and field data from a small shallow lake with sloping sides and an essentially flat bottomed interior, as well as published results from the literature. The steady state horizontal exchange can be described by Q = 0.24 B 1/3 (l tan q/(1 + tan q)) 4/3 , where Q is the discharge rate per unit length of shoreline, q is the angle of the bottom slope, B is the surface buoyancy flux and l is the horizontal length of the forcing region over the slope. The flushing timescale of the wedge shaped littoral region was given by t f~l 2/3 (1 + tan q) 4/3 /(B tan q) 1/3 . While the buoyancy flux in the field is almost never constant in space or time and the slope from the shore is seldom uniform, we found that the exchange rate was relatively insensitive to buoyancy flux changes and only moderately sensitive to slope.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.