Neurexins are neuronal cell surface proteins with hundreds of isoforms generated by alternative splicing. Here we describe neuroligin 1, a neuronal cell surface protein that is enriched in synaptic plasma membranes and acts as a splice site-specific ligand for beta-neurexins. Neuroligin 1 binds to beta-neurexins only if they lack an insert in the alternatively spliced sequence of the G domain, but not if they contain an insert. The extracellular sequence of neuroligin 1 is composed of a catalytically inactive esterase domain homologous to acetylcholinesterase. In situ hybridization reveals that alternative splicing of neurexins at the site recognized by neuroligin 1 is highly regulated. These findings support a model whereby alternative splicing of neurexins creates a family of cell surface receptors that confers interactive specificity onto their resident neurons.
A protein kinase characterized by its ability to phosphorylate microtubule-associated protein-2 (MAP2), is thought to be an early intermediate in an insulin-stimulated phosphorylation cascade and in a variety of other mammalian cell responses to extracellular signals. A complementary DNA that encodes this protein serine-threonine kinase has been cloned, and the protein designated extracellular signal-regulated kinase 1 (ERK1). ERK1 has striking similarity to two protein kinases, KSS1 and FUS3, from yeast. The yeast kinases function in an antagonistic manner to regulate the cell cycle in response to mating factors. Thus, ERK1 and the two yeast kinases constitute a family of evolutionarily conserved enzymes involved in regulating the response of eukaryotic cells to extracellular signals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.