A series of 6,7-dichloro-1,4-dihydro-(1H, 4H)-quinoxaline-2,3-diones (1-17) were prepared in which the 5-position substituent was a heterocyclylmethyl or 1-(heterocyclyl)-1-propyl group. Structure-activity relationships were evaluated where binding affinity for the glycine site of the N-methyl-D-aspartate (NMDA) receptor was measured using the specific radioligand [3H]-L-689,560, and functional antagonism was demonstrated by inhibition of NMDA-induced depolarizations of rat cortical wedges. The ability to prevent NMDA-induced hyperlocomotion in mice in vivo was measured for selected compounds. Binding affinity increased significantly if the heterocyclic group, e.g. 1,2,3-triazol-1-yl could participate in accepting a hydrogen bond from the receptor. It was difficult to obtain compounds with adequate aqueous solubility and strategies to improve it were investigated. The most potent compound in this series, 6,7-dichloro-5-[1-(1,2,4-triazol-4-yl)propyl]-1,4-dihydro-(1H, 4H)-quinoxaline-2,3-dione (17) (binding IC50 = 2.6 nM; cortical wedge EC50 = 90 nM), inhibited NMDA-induced hyperlocomotion in mice (6/9 protected at 20 mg/kg iv). Pharmacokinetic parameters, including extent of brain penetration, for 11 and 17 are reported.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.