Abstract. As the primary energy and carbon source in aquatic food webs, phytoplankton generally display spatial heterogeneity due to complicated biotic and abiotic controls; however our understanding of the causes of this spatial heterogeneity is challenging, as it involves multiple regulatory mechanisms. We applied a combination of field observation, numerical modeling, and remote sensing to display and interpret the spatial gradient of phytoplankton biomass in a Dutch tidal bay (the Eastern Scheldt) on the east coast of the North Sea. The 19 years (1995–2013) of monitoring data reveal a seaward increasing trend in chlorophyll-a (chl a) concentrations during the spring bloom. Using a calibrated and validated three-dimensional hydrodynamic–biogeochemical model, two idealized model scenarios were run: switching off the suspension feeders and halving the open-boundary nutrient and phytoplankton loading. Results reveal that bivalve grazing exerts a dominant control on phytoplankton in the bay and that the tidal import mainly influences algal biomass near the mouth. Satellite data captured a post-bloom snapshot that indicated the temporally variable phytoplankton distribution. Based on a literature review, we found five common spatial phytoplankton patterns in global estuarine–coastal ecosystems for comparison with the Eastern Scheldt case: seaward increasing, seaward decreasing, concave with a chlorophyll maximum, weak spatial gradients, and irregular patterns. We highlight the temporal variability of these spatial patterns and the importance of anthropogenic and environmental influences.
The concept of ecosystem services (ES), first introduced in 1970’s, gained mainstream attention in 2005, when the Millennium Ecosystem Assessment formally proposed a definition for it. In spite of this attention, many aspects about the ES concept have remained controversial to date, i.e., their classification, value, generation, link to human well-being, and supportive role as management tool. This review explores the knowledge status of ecosystem services, focusing on those services generated in coastal and marine environments (CMES). A knowledge gap and an underdevelopment of tools to assess CMES is evident in the literature, especially when compared to the progress done in the assessment of land ES. Possible explanations reside on the yet small proportion that the research done on CMES represents for the ecosystem service framework (ESF), in part due to the intrinsic challenges of researching the marine environment, also due to the limited availability of spatial data on marine ecosystems. Nevertheless, the ES concept is getting more attention toward policy-makers and stakeholders, leading to the implementation of an ecosystem services approach (ESA) to the management and protection of CMES. Six lessons are rescued from the literature to improve the ESA: (1) integration of the ESA in a science-policy process; (2) more simplicity for the CMES prediction models; (3) move toward empowering of stakeholders; (4) integration of the value pluralism of CMES with less focus on money; (5) the link of ES to Human Well-being must not been forgotten; and (6) communication of results and social literacy are key.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.