Chronic daily ethanol treatment induced changes in the HPA axis that persisted for at least 3 weeks after complete cessation of ethanol consumption. These persistent alterations in the HPA axis are similar to the aberrant HPA regulation of abstinent alcoholics, sons of alcoholics, Lewis rats, and individuals who suffer from posttraumatic stress disorder and some types of depression, that is, categories of individuals who all exhibit increased risk for high ethanol consumption. Thus, these chronic daily ethanol-induced persistent changes in the HPA axis may have significant roles in alcohol abstinence syndrome and may increase vulnerability to relapse.
Chronic daily ethanol treatment induced changes in the HPA axis that persisted for at least 3 weeks after complete cessation of ethanol consumption. These persistent alterations in the HPA axis are similar to the aberrant HPA regulation of abstinent alcoholics, sons of alcoholics, Lewis rats, and individuals who suffer from posttraumatic stress disorder and some types of depression, that is, categories of individuals who all exhibit increased risk for high ethanol consumption. Thus, these chronic daily ethanol-induced persistent changes in the HPA axis may have significant roles in alcohol abstinence syndrome and may increase vulnerability to relapse.
To assess acute effects of alcohol on forebrain and pituitary opiomelanocortinergic regulation, a model was developed in which "experienced" (previously introduced to ethanol administration, so the subjective response was not a novel stimulus) male Sprague-Dawley rats received pulsatile intragastric ethanol infusions during the dark (active) photophase to produce and sustain (for 3 hr) behaviorally relevant (0, 40 to 70, 80 to 110, or 120 to 150 mg/dl) plasma ethanol levels. The effects of alcohol on hypothalamo-pituitary-adrenal (H-P-A) axis function were biphasic with respect to dosage (inhibition with low dosage and stimulation with higher dosages) and time (initial stimulation with higher dosages was followed by rapid return to control levels even though elevated plasma ethanol levels were maintained). The effects of alcohol on H-P-A activation were also inconsistent; some of the animals did not appear to respond even though elevated (i.e., >100 mg/dl) plasma ethanol levels were produced. Induction of moderate (80 to 110 mg/dl) plasma ethanol levels acutely (within 30 min) increased immunoreactive (i) beta-endorphin concentrations in the ventral tegmental area of the brain; higher (120 to 150 mg/dl) plasma ethanol levels increased i beta-endorphin concentrations in both the ventral tegmental area and the nucleus accumbens, whereas i beta3-endorphin concentrations were not significantly altered in other brain areas. High (120 to 150 mg/dl) plasma ethanol levels also increased mediobasohypothalamic pro-opiomelanocortin (biosynthetic precursor of forebrain beta-endorphin) mRNA concentrations at 3 and 6 hr after initiation of ethanol infusions. Results demonstrate that atraumatic induction of physiologically meaningful plasma alcohol levels by gastric ethanol infusion activates the forebrain opiomelanocortinergic opioid system and exerts complex effects on the interrelated H-P-A system, consistent with evidence that these systems may interact to mediate or modulate some responses to alcohol ingestion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.