Diseases transmitted by hematophagous (blood-feeding) insects are responsible for millions of human deaths worldwide. In hematophagous insects, the blood meal is important for regulating egg maturation. Although a high concentration of iron is toxic for most organisms, hematophagous insects seem unaffected by the iron load in a blood meal. One means by which hematophagous insects handle this iron load is, perhaps, by the expression of iron-binding proteins, specifically the iron storage protein ferritin. In vertebrates, ferritin is an oligomer composed of two types of subunits called heavy and light chains, and is part of the constitutive antioxidant response. Previously, we found that the insect midgut, a main site of iron load, is also a primary site of ferritin expression and that, in the yellow fever mosquito, Aedes aegypti, the expression of the ferritin heavy-chain homologue (HCH) is induced following blood feeding. We now show that the expression of the Aedes ferritin light-chain homologue (LCH) is also induced with blood-feeding, and that the genes of the LCH and HCH are tightly clustered. mRNA levels for both LCH-and HCH-genes increase with iron, H 2 O 2 and hemin treatment, and the temporal expression of the genes is very similar. These results confirm that ferritin could serve as the cytotoxic protector in mosquitoes against the oxidative challenge of the bloodmeal. Finally, although the Aedes LCH has no iron responsive element (IRE) at its 5¢-untranslated region (UTR), the 5¢-UTR contains several introns that are alternatively spliced, and this alternative splicing event is different from any ferritin message seen to date.
The 300 kDa cation-independent mannose 6-phosphate receptor (CI-MPR) and the 46 kDa cation-dependent MPR (CD-MPR) are key components of the lysosomal enzyme targeting system that bind newly synthesized mannose 6-phosphate (Man-6-P)-containing acid hydrolases and divert them from the secretory pathway. Previous studies have mapped two high-affinity Man-6-P binding sites of the CI-MPR to domains 1-3 and 9 and one low-affinity site to domain 5 within its 15-domain extracytoplasmic region. A structure-based sequence alignment predicts that domain 5 contains the four conserved residues (Gln, Arg, Glu, Tyr) identified as essential for Man-6-P binding by the CD-MPR and domains 1-3 and 9 of the CI-MPR. Here we show by surface plasmon resonance (SPR) analyses of constructs containing single amino acid substitutions that these conserved residues (Gln-644, Arg-687, Glu-709, Tyr-714) are critical for carbohydrate recognition by domain 5. Furthermore, the N-glycosylation site at position 711 of domain 5, which is predicted to be located near the binding pocket, has no influence on the carbohydrate binding affinity. Endogenous ligands for the MPRs that contain solely phosphomonoesters (Man-6-P) or phosphodiesters (mannose 6-phosphate N-acetylglucosamine ester, Man-P-GlcNAc) were generated by treating the lysosomal enzyme acid alpha-glucosidase (GAA) with recombinant GlcNAc-phosphotransferase and uncovering enzyme (N-acetylglucosamine-1-phosphodiester alpha-N-acetylglucosaminidase). SPR analyses using these modified GAAs demonstrate that, unlike the CD-MPR or domain 9 of the CI-MPR, domain 5 exhibits a 14-18-fold higher affinity for Man-P-GlcNAc than Man-6-P, implicating this region of the receptor in targeting phosphodiester-containing lysosomal enzymes to the lysosome.
Promoters that direct the expression of antipathogenic molecules to primary sites of pathogenic invasions provide a means to interfere with these invasions. Thus, they have the potential to be used in mosquito control. However, exogenous elements are known to lower the fitness of most insects, and given the ability of insects to evolve rapidly, all currently known promoters could be rendered useless. As transgenic mosquitoes may be a major component in the fight against mosquito-borne diseases, the identification of new mosquito promoters is needed. The promoter of the Aedes aegypti ferritin light-chain homologue (LCH) gene, a gene whose expression is induced in gut tissues during blood feeding has been identified and mapped. Transfection data indicate that the ferritin LCH promoter is a strong promoter. DNase I footprinting data and Transfac analyses suggest that the ferritin LCH promoter contains putative GATA, E2F, NIT2, TATA and DPE sites. These data together provide the first detailed map of a known ferritin LCH gene.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.