The nuclear spin dependence of the chemical reaction H(3)(+)+ H(2) → H(2) + H(3)(+) has been studied in a hollow cathode plasma cell. Multipass infrared direct absorption spectroscopy has been employed to monitor the populations of several low-energy rotational levels of ortho- and para-H(3)(+) (o-H(3)(+) and p-H(3)(+)) in hydrogenic plasmas of varying para-H(2) (p-H(2)) enrichment. The ratio of the rates of the proton hop (k(H)) and hydrogen exchange (k(E)) reactions α ≡ k(H)/k(E) is inferred from the observed p-H(3)(+) fraction as a function of p-H(2) fraction using steady-state chemical models. Measurements have been performed both in uncooled (T(kin) ∼ 350 K) and in liquid-nitrogen-cooled (T(kin) ∼ 135 K) plasmas, marking the first time this reaction has been studied at low temperature. The value of α has been found to decrease from 1.6 ± 0.1 at 350 K to 0.5 ± 0.1 at 135 K.
A direct current discharge has been coupled with a continuous supersonic expansion to provide a source of rotationally cold molecular ions for gas phase spectroscopy. Constructed primarily of machinable ceramic and stainless steel, this source design is modular, customizable, and robust. Its performance has been assessed by recording transitions within the nu(2) fundamental band of H(3) (+) using cavity ringdown spectroscopy to determine the rotational temperature of ions produced in the free-jet expansion. Temperature and column density were recorded as a function of discharge current as the source was operated over a period of 200 h. Observed temperatures ranged between 50-110 K, and the ion column densities between 8x10(10) and 2x10(12) cm(-2).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.