We examined how attention affected the orientation tuning of 262 isolated neurons in extrastriate area V4 and 135 neurons in area V1 of two rhesus monkeys. The animals were trained to perform a delayed match-to-sample task in which oriented stimuli were presented in the receptive field of the neuron being recorded. On some trials the animals were instructed to pay attention to those stimuli, and on other trials they were instructed to pay attention to other stimuli outside the receptive field. In this way, orientation-tuning curves could be constructed from neuronal responses collected in two behavioral states: one in which those stimuli were attended by the animal and one in which those stimuli were ignored by the animal. We fit Gaussians to the neuronal responses to twelve different orientations for each behavioral state. Although attention enhanced the responses of V4 neurons (median 26% increase) and V1 neurons (median 8% increase), selectivity, as measured by the width of its orientation-tuning curve, was not systematically altered by attention. The effects of attention were consistent with a multiplicative scaling of the driven response to all orientations. We also found that attention did not cause systematic changes in the undriven activity of the neurons.
Attention is the mechanism with which we select specific aspects of our environment for processing. Psychological experiments have shown that attention can be directed to a spatial location or to a particular object. Electrophysiological studies in trained macaque monkeys have found that attention can strengthen the responses of neurons in cortical area V4. Some of these studies have attributed these effects to spatial attention, whereas others have suggested that feature-directed attention may modulate the neuronal response. Here we report that neuronal correlates for both spatial and feature-directed attention exist in individual neurons in area V4 of behaving rhesus monkeys.
To determine the physiological mechanisms underlying the enhancement of performance by attention, we examined how attention affects the ability of isolated neurons to discriminate orientation by investigating the reliability of responses with and without attention. Recording from 262 neurons in cortical area V4 while two rhesus macaques did a delayed match-to-sample task with oriented stimuli, we found that attention did not produce detectable changes in the variability of neuronal responses but did improve the orientation discriminability of the neurons. We also found that attention did not change the relationship between burst rate and response rate. Our results are consistent with the idea that attention selects groups of neurons for a multiplicative enhancement in response strength.
Signals relayed through the magnocellular layers of the LGN travel on axons with faster conduction speeds than those relayed through the parvocellular layers. As a result, magnocellular signals might reach cerebral cortex appreciably before parvocellular signals. The relative speed of these two channels cannot be accurately predicted based solely on axon conduction speeds, however. Other factors, such as different degrees of convergence in the magnocellular and parvocellular channels and the retinal circuits that feed them, can affect the time it takes for magnocellular and parvocellular signals to activate cortical neurons. We have investigated the relative timing of visual responses mediated by the magnocellular and parvocellular channels. We recorded individually from 78 magnocellular and 80 parvocellular neurons in the LGN of two anesthetized monkeys. Visual response latencies were measured for small spots of light of various intensities. Over a wide range of stimulus intensities the fastest magnocellular response latencies preceded the fastest parvocellular response latencies by about 10 ms. Because parvocellular neurons are far more numerous than magnocellular neurons, convergence in cortex could reduce the magnocellular advantage by allowing parvocellular signals to generate detectable responses sooner than expected based on the responses of individual parvocellular neurons. An analysis based on a simple model using neurophysiological data collected from the LGN shows that convergence in cortex could eliminate or reverse the magnocellular advantage. This observation calls into question inferences that have been made about ordinal relationships of neurons based on timing of responses.
Spatial attention has long been postulated to act as a spotlight that increases the salience of visual stimuli at the attended location. We examined the effects of attention on the receptive fields of simple cells in primary visual cortex (V1) by training macaque monkeys to perform a task with two modes. In the attended mode, the stimuli relevant to the animal's task overlay the receptive field of the neuron being recorded. In the unattended mode, the animal was cued to attend to stimuli outside the receptive field of that neuron. The relevant stimulus, a colored pixel, was briefly presented within a white-noise stimulus, a flickering grid of black and white pixels. The receptive fields of the neurons were mapped by correlating spikes with the white-noise stimulus in both attended and unattended modes. We found that attention could cause significant modulation of the visually evoked response despite an absence of significant effects on the overall firing rates. On further examination of the relationship between the strength of the visual stimulation and the firing rate, we found that attention appears to cause multiplicative scaling of the visually evoked responses of simple cells, demonstrating that attention reaches back to the initial stages of visual cortical processing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.