Summary1. In tropical forests, vascular epiphyte diversity increases with tree size, which could result from an increase in area, time for colonization or an increase in microhabitat heterogeneity within-tree crowns if vascular epiphyte species are specialized to particular microhabitats within the crown. The importance of microhabitats in structuring epiphyte communities has been hypothesized for more than 120 years but not yet confirmed. 2. We tested the importance of microhabitats in structuring epiphyte communities by examining microhabitat heterogeneity and epiphyte communities within the crowns of different-sized Virola koschnyi (Myristicaceae) emergent trees in a Costa Rican tropical wet forest. We tested the degree to which epiphyte species composition was associated with environmental conditions and resources (i.e. microhabitats) using multivariate analyses and a null model that compared the observed epiphyte assemblages amongst different-sized trees and crown zones with assemblages generated randomly. This study is the first to rigorously examine the degree of microhabitat specialization in epiphyte communities. 3. Microhabitat heterogeneity, epiphyte species richness and abundance increased with tree size. The largest trees had the highest microhabitat and epiphyte diversity and a unique inner crown microhabitat with canopy humus. The few epiphytes found on small trees were mostly bark ferns. Large trees had different epiphyte communities in different parts of the crown; the inner crown contained species not abundant in any other microhabitat (i.e. aroids, cyclanths and humus ferns), and the outer crown contained bark ferns and atmospheric bromeliads. 4. Variation in species composition amongst tree size classes was significantly related to the mean daily maximum vapour pressure deficit and tree diameter, while variation within large tree crowns was significantly related to canopy humus cover. 5. Microhabitat specialization of epiphyte species increased with tree size with 6% of species significantly associated with small trees and 57% significantly associated with large trees. Of the species present in large tree crowns, 23% were specialized to the unique inner crown microhabitat. 6. Synthesis. The increase in microhabitat heterogeneity within tree crowns as trees grow contributes to changes in epiphyte community structure, which supports decades-old hypotheses of the importance of microhabitat diversity and specialization in structuring tropical epiphyte communities.
The canopy is host to a large percentage of the flora and fauna in tropical wet forests and is distinct from the forest floor in plant richness, soil type and microclimate. In this study, we examined the influence of tree species and season on soil nutrient cycling processes in canopy soils of four tree species common to Costa Rican wet forests. We also compared the canopy soils to the associated forest floor mineral soils. Both tree species and season had strong effects on canopy soil nutrients and processes.Canopy soils from trees with high litter lignin concentrations had higher net N-mineralization rates and higher dissolved inorganic N concentrations than those with low lignin concentrations. During the dry season, net N-immobilization occurred and dissolved organic and inorganic N and available P concentrations were significantly higher than during the wet season. Overall, canopy soils had higher N levels and higher fungi + bacteria richness than forest floor mineral soils. The differences in canopy soil properties observed among tree species indicates that these species have distinct N cycles that reflect differences in both soil origin and biological controls.
Land-use change can have profound effects on forest communities, compromising seedling recruitment and growth, and long-term persistence of forests on the landscape. Continued forest conversion to agriculture causes forest fragmentation which decreases forest size, increases edge effects and forest isolation, all of which negatively impact forest health. These fragmentation effects are magnified by human use of forests, which can compromise the continued persistence of species in these forests and the ability of the forests to support the communities that depend on them. We examined the extent and influence of human disturbance (e.g. weedy taxa, native and exotic tree plantations, clearings, buildings) on the ecological status of sacred church forests in the northern highlands of South Gondar, Ethiopia and hypothesized that disturbance would have a negative effect. We found that disturbance was high across all forests (56%) and was negatively associated with tree species richness, density, and biomass and seedling richness and density. Contrary to expectation, we found that forests < 15.5 ha show no difference in disturbance level with distance from population center. Based on our findings, we recommend that local conservation strategies not only protect large forests, but also the small and highly used forests in South Gondar which are critical to the needs of local people, including preserving large trees for seed sources, removing exotic and weedy species from forests, and reducing clearings and trails within forests.
Secondary forests that develop following land abandonment could compensate for the losses of diversity and structure that accompany deforestation of old-growth forests in tropical regions. Whether secondary forests can harbor similar species richness, density, and composition of old-growth forests for vascular epiphytes remains largely unknown for secondary forests older than 50 yr. We examined community structure (species richness, density, and species composition) of vascular epiphytes in older secondary forests between 35 and 115 yr after land abandonment and nearby old-growth forests to determine if the community structure of epiphytes in secondary forests approaches that of old-growth forests over time. The recovery of epiphyte species richness was rapid with 55-year-old forests containing 65 percent of old-growth epiphyte species richness. Secondary forest epiphyte communities were found to be statistically nested within secondary forests older in age and within old-growth forests. Similarity of epiphyte communities to old-growth forests increased to 75 percent, 115 yr after abandonment. This study suggests that secondary forests will likely recover old-growth epiphyte richness and composition given enough time. Epiphyte densities did not recover quickly with 55-year-old forests having 14 percent and 115-year-old forests having only 49 percent of the density of old-growth forest epiphytes. The low density of epiphytes in secondary forests could impact rainforest diversity and function. We conclude that in less than 115 yr, although secondary moist forests have high conservation value for some aspects of community structure, they are unlikely to compensate biologically for the loss of diversity and ecosystem function that high epiphyte densities provide.Abstract in Spanish is available in the online version of this article.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.