Poly-ADP-ribose-polymerase (PARP) inhibitors have achieved regulatory approval in oncology for homologous recombination repair deficient tumors including BRCA mutation. However, some have failed in combination with first-line chemotherapies, usually due to overlapping hematological toxicities. Currently approved PARP inhibitors lack selectivity for PARP1 over PARP2 and some other 16 PARP family members, and we hypothesized that this could contribute to toxicity. Recent literature has demonstrated that PARP1 inhibition and PARP1− DNA trapping are key for driving efficacy in a BRCA mutant background. Herein, we describe the structure-and property-based design of 25 (AZD5305), a potent and selective PARP1 inhibitor and PARP1−DNA trapper with excellent in vivo efficacy in a BRCA mutant HBCx-17 PDX model. Compound 25 is highly selective for PARP1 over other PARP family members, with good secondary pharmacology and physicochemical properties and excellent pharmacokinetics in preclinical species, with reduced effects on human bone marrow progenitor cells in vitro.
Herein, we report the optimization of a metasubstituted series of selective estrogen receptor degrader (SERD) antagonists for the treatment of ER+ breast cancer. Structure-based design together with the use of modeling and NMR to favor the bioactive conformation led to a highly potent series of basic SERDs with promising physicochemical properties. Issues with hERG activity resulted in a strategy of zwitterion formation and ultimately in the identification of 38. This compound was shown to be a highly potent SERD capable of effectively degrading ERα in both MCF-7 and CAMA-1 cell lines. The low lipophilicity and zwitterionic nature led to a SERD with a clean secondary pharmacology profile and no hERG activity. Favorable physicochemical properties resulted in good oral bioavailability in preclinical species and potent in vivo activity in a mouse xenograft model.
Since the approval of olaparib in 2014 for BRCA mutated (BRCAm) ovarian cancer, many PARP inhibitors have been developed and have seen widespread success. However, as a class, these drugs are not without adverse events which have limited their ability to be combined with chemotherapy. Most first generation PARP inhibitors were developed and optimized before the concept of PARP1-DNA trapping was discovered as the mechanism by which PARP inhibitors exert their synthetic lethal effects on BRCAm cells. Moreover, the first generation PARP inhibitors were not optimized for selectivity across the PARP family potentially driving undesirable side effects, including intestinal toxicity from tankyrase inhibition or hematological toxicity from PARP2 inhibition. With this in mind, we set out to discover a best-in-class, second generation PARP inhibitor that was highly selective for PARP1 over the other 16 members of the PARP family, as well as a highly potent PARP1-DNA trapper. PARP1 and PARP2 have a highly similar amino acid sequence, and most of the residues around the nicotinamide binding site are identical. However, there are some key residue differences in the helical domain which serves a regulator of the nicotinamide binding pocket. The publication of NMS-P118 in 2015 by Nerviano Medical Sciences showed that a highly selective PARP1 inhibitor could be found. This work inspired us to screen an extensive list of previously reported PARP inhibitors for selectivity against PARP2 and we found that FR257516 met the selectivity criteria as previously reported, but lacked the ability to trap PARP1 to DNA and hence lacked any activity in a cell colony formation assay in DLD-1 BRCA2-/- cells. Using parallel chemistry to generate diverse analogs, X-ray crystallography to enable structure-based design, and exploration of multiple nicotinamide mimetic cores, we were able to generate lead compound AZ4554, which was a PARP1 selective PARP1-DNA trapper with potent activity in BRCAm cells. Using concepts of property-based drug design, we were able to optimize lead compound AZ4554 into candidate drug AZD5305, making key improvements in secondary pharmacology, including reducing hERG activity, and intrinsic clearance in human microsomes through the introduction of polar atoms to lower logD without compromising permeability or oral bioavailability. AZD5305 is a highly selective binder of PARP1 over PARP2 and other PARP enzymes by fluorescence polarization, surface plasmon resonance, and single molecule spectroscopy. It is highly potent against DLD-1 BRCA2-/- cells, while sparing isogenic BRCA WT cells. The secondary pharmacology of AZD5305 is remarkably clean, with hERG activity >40 µM. AZD5305 has a very favorable pre-clinical PK profile, low predicted human dose, and has shown efficacy in an MDA-MB-436 mouse xenograft model. Citation Format: Sudhir Hande, Amber Balazs, Sébastien L. Degorce, Kevin Embrey, Avipsa Ghosh, Sonja J. Gill, Anders Gunnarsson, Giuditta Illuzzi, Jordan Lane, Carrie Larner, Elisabetta Leo, Andrew Madin, Lisa McWilliams, Mark J. O'Connor, Jonathan Orme, Fiona Pachl, Martin Packer, Andy Pike, Philip Rawlins, Marianne Schimpl, Anna D. Staniszewska, Andrew Zhang, Xiaolan Zheng, Jeffrey W. Johannes. Structure-based and property-based drug design of AZD5305, a highly selective PARP1 inhibitor and trapper [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2021; 2021 Apr 10-15 and May 17-21. Philadelphia (PA): AACR; Cancer Res 2021;81(13_Suppl):Abstract nr 296.
PARP inhibitors exploit defects in DNA repair pathways to selectively target cancerous cells via PARP1 catalytic inhibition and PARP1 trapping onto the DNA. All known clinical PARP1 inhibitors bind at the same site at the catalytic center of the enzyme. However, despite this resemblance they show immensely different outcomes in terms of response rate in the clinic due to their varying degree of PARP trapping ability. Moreover, the first-generation PARP inhibitors were not optimized for selectivity across the PARP family potentially driving undesirable side effects, including intestinal toxicity from tankyrase inhibition or hematological toxicity from PARP2 inhibition. There has been strong rationale for the use of PARP inhibitors in neuro-oncology. However, the first-generation PARP inhibitors have limited CNS distribution as these drugs were not designed for brain penetration. Recently AstraZeneca has reported the discovery of AZD5305, a next generation PARP1 selective inhibitor and PARP1-DNA trapper which was not designed with a CNS penetrant profile. Given the unmet need of a brain penetrant PARP1 inhibitor, we set out to identify a highly potent and selective PARP1 inhibitor and trapper with CNS profile. In our next generation PARP1 inhibitor, we sought to retain the profile of AZD5305 and lower the efflux for CNS penetration. Despite the challenge of narrow SAR, we successfully used the structure- and property-based design approach to identify a brain penetrant PARP1 inhibitor and PARP1-DNA trapper. We used multiple medicinal chemistry maneuvers such as masking the hydrogen bond donors and core modifications to lower the efflux in order to achieve brain penetration. Further optimization of the nicotinamide mimetic core for potency and metabolic stability led us to the discovery of AZD9574.AZD9574 shows improved selectivity for PARP1 over PARP2 vs AZD5305 and retains its excellent selectivity over other PARP family members. It has low efflux in Caco2, MDCK-MDR1, and MDCK-MDR1-BCRP permeability assays and it also showed CNS penetration in rat and cynomolgus monkey. AZD9574 has excellent secondary pharmacology and acceptable physicochemical properties and good PK in preclinical species.In vitro, AZD9574 selectively inhibits the growth of BRCAm cell lines. Importantly, AZD9574 showed efficacy in an intracranial BRCA1m MDA-MB-436 xenograft model at doses of 3, 10 and 30 mg/kg QD, significantly extending the survival of tumor-bearing mice compared to vehicle control arm.In summary, AZD9574 is a next generation selective PARP1 inhibitor and trapper with CNS penetration. This profile makes it an ideal candidate for treating CNS malignancies or brain metastases that have a dependence on PARP inhibition either as single agent or in combination with other therapies. Citation Format: Avipsa Ghosh, Sudhir M. Hande, Amber Balazs, Derek Barratt, Sabina Cosulich, Barry Davies, Sébastien Degorce, Kevin Embrey, Sonja Gill, Anders Gunnarsson, Giuditta Illuzzi, Peter Johnström, Jordan Lane, Carrie Larner, Rachel Lawrence, Elisabetta Leo, Andrew Madin, Elizabeth Martin, Lisa McWilliams, Lenka O’Connor, Mark O’Connor, Jonathan Orme, Fiona Pachl, Martin Packer, Andy Pike, Philip Rawlins, Marianne Schimpl, Magnus Schou, Anna Staniszewska, Wenzhan Yang, James Yates, Andrew Zhang, XiaoLa Zheng, Stephen Fawell, Petra Hamerlik, Jeffrey Johannes. Structure-based and property-based drug design of AZD9574, a CNS penetrant PARP1 selective inhibitor and trapper [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2022; 2022 Apr 8-13. Philadelphia (PA): AACR; Cancer Res 2022;82(12_Suppl):Abstract nr 6302.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.