Children up to 6 years of age-who lived with pesticide applicators were monitored for icreased risk of pestiide exposure: 48 pesticide applicator nd 14 refrece fmfiie were recruited fom an agcultura region ofWashingon State inlune 1995. A total af 160 spot urine satpie were coilected from 88 children,
Children up to 6 years of age who lived with pesticide applicators were monitored for increased risk of pesticide exposure: 48 pesticide applicator and 14 reference families were recruited from an agricultural region of Washington State in June 1995. A total of 160 spot urine samples were collected from 88 children, including repeated measures 3-7 days apart. Samples were assayed by gas chromatography flame photometric detector for dimethylphosphate metabolites. Dimethylthiophosphate (DMTP) was the dominant metabolite. DMTP levels were significantly higher in applicator children than in reference children (p = 0.015), with median concentrations of 0.021 and 0.005 microg/ml, respectively; maximum concentrations were 0.44 and 0.10 microg/ml, respectively. Percentages of detectable samples were 47% for applicator children and 27% for reference children. A marginally significant trend of increasing concentration was observed with decreasing age among applicator children (p = 0.060), and younger children within these families had significantly higher concentrations when compared to their older siblings (p = 0.040). Applicator children living less than 200 feet from an orchard were associated with higher frequency of detectable DMTP levels than nonproximal applicator children (p =0.036). These results indicate that applicator children experienced higher organophosphorus pesticide exposures than did reference children in the same community and that proximity to spraying is an important contributor to such exposures. Trends related to age suggest that child activity is an important variable for exposure. It is unlikely that any of the observed exposures posed a hazard of acute intoxication. This study points to the need for a more detailed understanding of pesticide exposure pathways for children of agricultural workers.ImagesFigure 1.Figure 2.Figure 3.
Children can be exposed to pesticides from multiple sources and through multiple pathways. In addition to the standard pathways of diet, drinking water and residential pesticide use, children in agricultural communities can be exposed to pesticides used in agricultural production. A research program on children and pesticides was established at the University of Washington ( UW ) in 1991 and has focused on two major exposure pathway issues: residential proximity to pesticide -treated farmland and transfer of pesticides from the workplace to the home ( paraoccupational or take -home exposure ) . The UW program selected preschool children of agricultural producers and farm workers in the tree fruit region of Washington state as a population that was likely to have elevated exposures from these pathways. The organophosphorus ( OP ) pesticides were selected as a common class of chemicals for analysis so that issues of aggregate exposure and cumulative risk could be addressed. This paper provides an overview of key findings of our research group over the past 8 years and describes current studies in this field. Soil and housedust concentrations of OP pesticides were elevated in homes of agricultural families ( household members engaged in agricultural production ) when compared to non -agricultural reference homes in the same community. Dialkyl phosphate metabolites of OP pesticides measured in children's urine were also elevated for agricultural children when compared to reference children and when compared to children in the Seattle metropolitan area. Proximity to farmland was associated with increased OP pesticide concentrations in housedust and OP pesticide metabolites in urine. Current studies include a community -based intervention to reduce parental transfer of pesticides from the workplace, and a systematic investigation of the role of agricultural spray drift in children's exposure to pesticides.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.