HIV type 1 (HIV-1) uses the chemokine receptors CCR5 and CXCR4 as coreceptors for entry into target cells. Here we show that the HIV-1 envelope gp120 (Env) activates multiple ionic signaling responses in primary human macrophages, which are important targets for HIV-1 in vivo. Env from both CCR5-dependent JRFL (R5) and CXCR4-dependent IIIB (X4) HIV-1 opened calcium-activated potassium (K Ca), chloride, and calcium-permeant nonselective cation channels in macrophages. These signals were mediated by CCR5 and CXCR4 because macrophages lacking CCR5 failed to respond to JRFL and an inhibitor of CXCR4 blocked ion current activation by IIIB. MIP-1 and SDF-1␣, chemokine ligands for CCR5 and CXCR4, respectively, also activated K Ca and Cl ؊ currents in macrophages, but nonselective cation channel activation was unique to gp120. Intracellular Ca 2؉ levels were also elevated by gp120. The patterns of activation mediated by CCR5 and CXCR4 were qualitatively similar but quantitatively distinct, as R5 Env activated the K Ca current more frequently, elicited Cl ؊ currents that were Ϸ2-fold greater in amplitude, and elevated intracellular Ca ؉2 to higher peak and steady-state levels. Env from R5 and X4 primary isolates evoked similar current responses as the corresponding prototype strains. Thus, the interaction of HIV-1 gp120 with CCR5 or CXCR4 evokes complex and distinct signaling responses in primary macrophages, and gp120-evoked signals differ from those activated by the coreceptors' chemokine ligands. Intracellular signaling responses of macrophages to HIV-1 may modulate postentry steps of infection and cell functions apart from infection.
CC chemokine receptors are important modulators of inflammation. Although CC chemokine receptors have been found predominantly on leukocytes, recent studies have suggested that vascular smooth muscle cells respond to CC chemokines. We now report that human smooth muscle cells express CCR5, a co-receptor for human immunodeficiency virus. CCR5 mRNA was detectable by RNA blot hybridization in human aortic and coronary artery smooth muscle cells. The cDNA generated by reverse transcription-polymerase chain reaction from aortic smooth muscle cells had 100% identity throughout the entire coding region with the CCR5 cloned from THP-1 cells. By immunohistochemistry, CCR5 and the CCR5 ligand, macrophage inflammatory protein-1 (MIP-1), were detected in smooth muscle cells and macrophages of the atherosclerotic plaque. In smooth muscle cell culture, MIP-1 induced a significant increase in intracellular calcium concentrations, which was blocked by an antibody to CCR5. In addition, MIP-1 caused a calcium-dependent increase in tissue factor activity. Tissue factor is the initiator of coagulation and is thought to play a key role in arterial thrombosis. These data suggest that human arterial smooth muscle cells express functional CCR5 receptors and MIP-1 is an agonist for these cells.
There have been increasing reports of acute coronary thrombotic events in patients with HIV. Although these clinical events have been attributed primarily to dyslipidemia associated with protease inhibitor therapy, autopsy studies in children with HIV suggest the presence of an underlying arteriopathy. This study demonstrates that the HIV envelope protein, gp120, activates human arterial smooth muscle cells to express tissue factor, the initiator of the coagulation cascade. The induction of tissue factor by gp120 is mediated by two biologically relevant coreceptors for HIV infection, CXCR4 and CCR5, and is also dependent on the presence of functional CD4. Induction of tissue factor by gp120 requires activation of mitogen-activating protein kinases, activation of protein kinase C, and generation of reactive oxygen species, signaling pathways that have protean effects on smooth muscle cell physiology. The activation of smooth muscle cells by gp120 may play an important role in the vascular, thrombotic, and inflammatory responses to HIV infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.