In this work, we measured the metal-binding sites of natural and synthetic dihydroxyindole (DHI) melanins and their respective interactions with Fe(III) ions. Besides the two acid groups detected for the DHI system: catechol (Cat) and quinone-imine (QI), acetate groups were detected in the natural oligomer by potentiometric titrations. At acidic pH values, Fe(III) complexation with synthetic melanin was detected in an Fe(OH)(CatH2Cat) interaction. With an increase of pH, three new interactions occurred: dihydroxide diprotonated catechol, Fe(OH)2(CatH2Cat)−, dihydroxide monoprotonated catechol, [Fe(OH)2(CatHCat)]2−, and an interaction resulting from the association of one quinone-imine and a catechol group, [Fe(OH)2(Qi−)(CatHCat)]3−. In the natural melanin system, we detected the same interactions involving catechol and quinone-imine groups but also the metal interacts with acetate group at pH values lower than 4.0. Furthermore, interactions in the synthetic system were also characterized by infrared spectroscopy by using the characteristic vibrations of catechol and quinone-imine groups. Finally, scanning electronic microscopy (SEM) and energy-dispersive X-ray (EDS) analysis were used to examine the differences in morphology of these two systems in the absence and presence of Fe(III) ions. The mole ratio of metal and donor atoms was obtained by the EDS analysis.
Melanoma has traditionally been viewed as an ultra-violet (UV) radiation induced malignancy. While UV is a common inducing factor, other endogenous stresses such as metal ion accumulation or the melanin pigment itself, may provide alternative pathways to melanoma progression. Eumelanosomes within melanoma often exhibit disrupted membranes and fragmented pigment which may be due to alterations in their amyloid-based striatial matrix. The melanosomal amyloid can itself be toxic, especially in combination with reactive oxygen species (ROS) and reactive nitrogen species (RNS) generated by endogenous NADPH oxidase (NOX) and nitric oxide synthase (NOS) enzymes; a toxic mix that may initiate melanomagenesis. Further understanding of the loss of the melanosomal organization, the behavior of the exposed melanin, and the induction of ROS/RNS in melanomas may provide critical insights into this deadly disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.