Rpn13 is a novel mammalian proteasomal receptor that has recently been identified as an amplification target in ovarian cancer. It can interact with ubiquitin and activate the deubiquitinating enzyme Uch37 at the 26S proteasome. Since neither Rpn13 nor Uch37 is an integral proteasomal subunit, we explored whether either protein is essential for mammalian development and survival. Deletion of Uch37 resulted in prenatal lethality in mice associated with severe defect in embryonic brain development. In contrast, the majority of Rpn13-deficient mice survived to adulthood, although they were smaller at birth and fewer in number than wild-type littermates. Absence of Rpn13 produced tissue-specific effects on proteasomal function: increased proteasome activity in adrenal gland and lymphoid organs, and decreased activity in testes and brain. Adult Rpn13−/− mice reached normal body weight but had increased body fat content and were infertile due to defective gametogenesis. Additionally, Rpn13−/− mice showed increased T-cell numbers, resembling growth hormone-mediated effects. Indeed, serum growth hormone and follicular stimulating hormone levels were significantly increased in Rpn13−/− mice, while growth hormone receptor expression was reduced in the testes. In conclusion, this is the first report characterizing the physiological roles of Uch37 and Rpn13 in murine development and implicating a non-ATPase proteasomal protein, Rpn13, in the process of gametogenesis.
Mammalian sterile 20-like kinase 1 (Mst1) is a MAPK kinase kinase kinase which is involved in a wide range of cellular responses, including apoptosis, lymphocyte adhesion and trafficking. The contribution of Mst1 to Ag-specific immune responses and autoimmunity has not been well defined. In this study, we provide evidence for the essential role of Mst1 in T cell differentiation and autoimmunity, using both genetic and pharmacologic approaches. Absence of Mst1 in mice reduced T cell proliferation and IL-2 production in vitro, blocked cell cycle progression, and elevated activation-induced cell death in Th1 cells. Mst1 deficiency led to a CD4+ T cell development path that was biased toward Th2 and immunoregulatory cytokine production with suppressed Th1 responses. In addition, Mst1−/− B cells showed decreased stimulation to B cell mitogens in vitro and deficient Ag-specific Ig production in vivo. Consistent with altered lymphocyte function, deletion of Mst1 reduced the severity of experimental autoimmune encephalomyelitis (EAE) and protected against collagen-induced arthritis development. Mst1−/− CD4+ T cells displayed an intrinsic defect in their ability to respond to encephalitogenic antigens and deletion of Mst1 in the CD4+ T cell compartment was sufficient to alleviate CNS inflammation during EAE. These findings have prompted the discovery of novel compounds that are potent inhibitors of Mst1 and exhibit desirable pharmacokinetic properties. In conclusion, this report implicates Mst1 as a critical regulator of adaptive immune responses, Th1/Th2-dependent cytokine production, and as a potential therapeutic target for immune disorders.
Material Supplementary 6.DC1http://www.jimmunol.org/content/suppl/2010/05/26/jimmunol.100009
The phenylalanyl-glycyl–glycyl-alanyl-prolyl (FG-GAP) domain plays an important role in protein–protein interactions, including interaction of integrins with their ligands. Integrin-α FG-GAP repeat-containing protein 2 (Itfg2) is a highly conserved protein in vertebrates that carries two FG-GAP domains, but its role in mammalian physiology is unknown. In this article, we show that Itfg2 is an intracellular protein and it plays a critical role in B cell differentiation and development of autoimmunity. Itfg2-deficient mice displayed a phenotype consistent with retention of B cells in the spleen and had a lower concentration of IgG in the blood when compared with wild-type littermates. Itfg2-deficient splenocytes also showed a defect in cell migration in vitro. After immunization with a thymus-dependent Ag, the absence of Itfg2 caused a shift in B cell maturation from the germinal centers to the extrafollicular regions of the spleen and blocked deposition of Ag-specific plasma cells in the bone marrow. In support of hematopoietic cell intrinsic activity of Itfg2, bone marrow transplantation of Itfg2-deficient cells was sufficient to impair germinal center development in wild-type mice. Furthermore, Itfg2 deficiency exacerbated development of autoimmune disease in MRL/lpr lupus-prone mice. These results identify Itfg2 as a novel contributor to B cell differentiation and a negative regulator of the autoimmune response during lupus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.