Infection-induced preterm birth is the largest cause of infant death and of neurological disabilities in survivors. Silibinin, from milk thistle, exerts potent anti-inflammatory activities in non-gestational tissues. The aims of this study were to determine the effect of silibinin on pro-inflammatory mediators in (i) human fetal membranes and myometrium treated with bacterial endotoxin lipopolysaccharide (LPS) or the pro-inflammatory cytokine IL-1β, and (ii) in preterm fetal membranes with active infection. The effect of silibinin on infection induced inflammation and brain injury in pregnant mice was also assessed. Fetal membranes and myometrium (tissue explants and primary cells) were treated with 200 μM silibinin in the presence or absence of 10 μg/ml LPS or 1 ng/ml IL-1β. C57BL/6 mice were injected with 70 mg/kg silibinin with or without 50 μg LPS on embryonic day 16. Fetal brains were collected after 6 h. In human fetal membranes, silibinin significantly decreased LPS-stimulated expression of IL-6 and IL-8, COX-2, and prostaglandins PGE2 and PGF2α. In primary amnion and myometrial cells, silibinin also decreased IL-1β-induced MMP-9 expression. Preterm fetal membranes with active infection treated with silibinin showed a decrease in IL-6, IL-8 and MMP-9 expression. Fetal brains from mice treated with silibinin showed a significant decrease in LPS-induced IL-8 and ninjurin, a marker of brain injury. Our study demonstrates that silibinin can reduce infection and inflammation-induced pro-labour mediators in human fetal membranes and myometrium. Excitingly, the in vivo results indicate a protective effect of silibinin on infection-induced brain injury in a mouse model of preterm birth.
Spontaneous preterm birth is the leading cause of infant death and of neurological disabilities in survivors. A significant proportion of spontaneous preterm births are associated with infection. Infection activates inflammation which induces a cascade of events that leads to myometrial contractions and rupture of fetal membranes. In non-gestational tissues, the citrus flavone nobiletin has been shown to exert potent anti-inflammatory properties. Thus, in this study, we sought to determine the effect of nobiletin on pro-inflammatory mediators in human fetal membranes and myometrium. Human fetal membranes and myometrium were treated with bacterial endotoxin lipopolysaccharide (LPS) in the absence or presence of nobiletin. In addition, the effect of nobiletin in fetal membranes taken from spontaneous preterm deliveries with and without infection (i.e. histological chorioamnionitis) was also examined. In human fetal membranes and myometrium, nobiletin significantly decreased LPS-stimulated expression of pro-inflammatory cytokines (TNF-α, IL-1β, IL-6 and IL-8) and MMP-9 expression and pro-MMP-9 secretion. Additionally, nobiletin significantly decreased COX-2 expression and subsequent prostaglandin (PG) E2 production. Notably, nobiletin was also able to reduce the expression and production of pro-inflammatory cytokines and MMP-9 in fetal membranes taken from women after spontaneous preterm birth. In conclusion, our study demonstrates that nobiletin can reduce infection-induced pro-inflammatory mediators in human fetal membranes and myometrium. These in vitro studies further support the increasing volume and quality of evidence that high fruit and vegetable intake in pregnancy is associated with a decreased risk of adverse pregnancy outcomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.