The proliferation of dams since 1950 promoted sediment deposition in reservoirs, which is thought to be starving the coast of sediment and decreasing the resilience of communities to storms and sea-level rise. Diminished river loads measured upstream from the coast, however, should not be assumed to propagate seaward. Here, we show that century-long records of sediment mass accumulation rates (g cm −2 yr −1) and sediment accumulation rates (cm yr −1) more than doubled after 1950 in coastal depocenters around North America. Sediment sources downstream of dams compensate for the river-sediment lost to impoundments. Sediment is accumulating in coastal depocenters at a rate that matches or exceeds relative sea-level rise, apart from rapidly subsiding Texas and Louisiana where water depths are increasing and intertidal areas are disappearing. Assuming no feedbacks, accelerating global sea-level rise will eventually surpass current sediment accumulation rates, underscoring the need for including coastal-sediment management in habitat-restoration projects.
Land cover and use around the margins of estuaries has shifted since 1950 at many sites in North America due to development pressures from higher population densities. Small coastal watersheds are ubiquitous along estuarine margins and most of this coastal land-cover change occurred in these tidal creek watersheds. A change in land cover could modify the contribution of sediments from tidal creek watersheds to downstream areas and affect estuarine habitats that rely on sediments to persist or are adversely impacted by sediment loading. The resilience of wetlands to accelerating relative sea-level rise depends, in part, on the supply of lithogenic sediment to support accretion and maintain elevation; however, subtidal habitats such as oyster reefs and seagrass beds are stressed under conditions of high turbidity and sedimentation. Here we compare sediment accumulation rates before and after 1950 using 210Pb in 12 tidal creeks across two distinct regions in North Carolina, one region of low relief tidal-creek watersheds where land cover change since 1959 was dominated by fluctuations in forest, silviculture, and agriculture, and another region of relatively high relief tidal-creek watersheds where land-use change was dominated by increasing suburban development. At eight of the creeks, mass accumulation rates (g cm-2 y-1) measured at the outlet of the creeks increased contemporaneously with the largest shift in land cover, within the resolution of the land-cover data set (~5-years). All but two creek sites experienced a doubling or more in sediment accumulation rates (cm yr-1) after 1950 and most sites experienced sediment accumulation rates that exceeded the rate of local relative sea-level rise, suggesting that there is an excess of sediment being delivered to these tidal creeks and that they may slowly be infilling. After 1950, land cover within one creek watershed changed little, as did mass accumulation rates at the coring location, and another creek coring site did not record an increase in mass accumulation rates at the creek outlet despite a massive increase in development in the watershed that included the construction of retention ponds. These abundant tidal-creek watersheds have little relief, area, and flow, but they are impacted by changes in land cover more, in terms of percent area, than their larger riverine counterparts, and down-stream areas are highly connected to their associated watersheds. This work expands the scientific understanding of connectivity between lower coastal plain watersheds and estuaries and provides important information for coastal zone managers seeking to balance development pressures and environmental protections.
An objective of salt marsh conservation, restoration, and creation is to reduce global carbon dioxide levels and offset emissions. This strategy hinges on measurements of salt marsh carbon accumulation rates, which vary widely creating uncertainty in monetizing carbon credits. Here, we show the 14–323 g C m−2 yr−1 range of carbon accumulation rates, derived from cores collected at seven sites in North Carolina U.S.A., results from the landward or basinward trajectory of salt marsh colonization and the intertidal space available for accretion. Rates increase with accelerating sea-level rise and are highest at young and expanding marsh edges. The highest carbon densities are near the upland, highlighting the importance of this area for building a rich stock of carbon that would be prevented by upland development. Explaining variability in carbon accumulation rates clarifies appraisal of salt marsh restoration projects and landscape conversion, in terms of mitigating green-house gas emissions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.