Deep learning tasks are often complicated and require a variety of components working together efficiently to perform well. Due to the often large scale of these tasks, there is a necessity to iterate quickly in order to attempt a variety of methods and to find and fix bugs. While participating in IARPA's Functional Map of the World challenge, we identified challenges along the entire deep learning pipeline and found various solutions to these challenges. In this paper, we present the performance, engineering, and deep learning considerations with processing and modeling data, as well as underlying infrastructure considerations that support large-scale deep learning tasks. We also discuss insights and observations with regard to satellite imagery and deep learning for image classification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.