Reproductive behavior in Drosophila has both stereotyped and plastic components that are driven by age- and sex-specific chemical cues. Males who unsuccessfully court virgin females subsequently avoid females that are of the same age as the trainer. In contrast, males trained with mature mated females associate volatile appetitive and aversive pheromonal cues and learn to suppress courtship of all females. Here we show that the volatile aversive pheromone that leads to generalized learning with mated females is (Z)-11-octadecenyl acetate (cis-vaccenyl acetate, cVA). cVA is a major component of the male cuticular hydrocarbon profile, but it is not found on virgin females. During copulation, cVA is transferred to the female in ejaculate along with sperm and peptides that decrease her sexual receptivity. When males sense cVA (either synthetic or from mated female or male extracts) in the context of female pheromone, they develop a generalized suppression of courtship. The effects of cVA on initial courtship of virgin females can be blocked by expression of tetanus toxin in Or65a, but not Or67d neurons, demonstrating that the aversive effects of this pheromone are mediated by a specific class of olfactory neuron. These findings suggest that transfer of cVA to females during mating may be part of the male's strategy to suppress reproduction by competing males.
Expansion of a CGG-repeat tract in the 5' untranslated region of the FMR1 gene causes the fragile X-related disorders (FXDs; aka the FMR1 disorders). The expansion mechanism is likely shared by the 35+ other diseases resulting from expansion of a disease-specific microsatellite, but many steps in this process are unknown. We have shown previously that expansion is dependent upon functional mismatch repair proteins, including an absolute requirement for MutLγ, one of the three MutL heterodimeric complexes found in mammalian cells. We demonstrate here that both MutLα and MutLβ, the two other MutL complexes present in mammalian cells, are also required for most, if not all, expansions in a mouse embryonic stem cell model of the FXDs. A role for MutLα and MutLβ is consistent with human GWA studies implicating these complexes as modifiers of expansion risk in other Repeat Expansion Diseases. The requirement for all three complexes suggests a novel model in which these complexes cooperate to generate expansions. It also suggests that the PMS1 subunit of MutLβ may be a reasonable therapeutic target in those diseases in which somatic expansion is an important disease modifier.
This study concerns the problem of odor receptor gene choice in the fruit fly Drosophila melanogaster. From a family of 60 Odor receptor genes, only one or a small number are selected for expression by each olfactory receptor neuron. Little is known about how an olfactory receptor neuron selects a receptor, or how the nucleotide sequences flanking a receptor gene dictate its expression in a particular neuron. Previous investigation has primarily concerned the maxillary palp, the simpler of the fly's two olfactory organs. Here we focus on genes encoding four antennal receptors that respond to fly odors in an in vivo expression system. To investigate the logic of odor receptor expression, we carry out a genetic analysis of their upstream regulatory sequences. Deletion analysis reveals that relatively short regulatory regions are sufficient to confer expression in the appropriate neurons, with limited if any misexpression. We find evidence for both positive and negative regulation. Multiple repressive functions restrict expression to the antenna, to a region of the antenna, and to neurons. Through deletion and base substitution mutagenesis we identify GCAATTA elements and find evidence that they act in both positive and negative regulation.
Metastasis to organs other than lung is rarely observed in animal model systems of human prostate carcinoma (PCA), with the exception of already metastatic isolates of human PCA cultured for long periods of time. To analyze more directly the evolution of metastatic variants from primary PCA tumor isolates, the lacZ histochemical marker gene was transfected into the CWR22Rv1 cell line isolated from the CWR22R xenograft (primary tumor). Three clones of varying lacZ-expression stability were analyzed for tumorigenicity and progression in athymic nude mice. Clones B and D were highly tumorigenic in the subcutis; however, lacZ expression was highly unstable. In contrast, clone H demonstrated highly stable lacZ expression for >25 passages in culture or in animals. Clone H, injected sc in a PBS vehicle, gave a 15-40% tumorigenic take. All primary tumor-bearing animals exhibited micrometastases in lung and other organs. Clone H injected in a Matrigel vehicle gave 100% tumorigenicity, with all animals displaying micrometastases in lung, liver, and/or bone (lower frequency in brain and kidney). Overall, the relative frequency of micrometastasis to multiple organs was lung>liver=bone>>brain>kidney. Overt metastases were never observed in the lung or bone but were occasionally found in liver. lacZ-transfected clone H CWR22Rv1 cells represent a much more accurate model of metastasis of PCA to the organs normally involved in progression of the human disease. Use of marker gene-tagged cells and other high-resolution molecular techniques will now permit analyses of the earliest events in PCA progression and micrometastasis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.