Cisplatin is a cytostatic agent used in the treatment of many types of cancer, but its use is associated with increased incidences of secondary leukemia. We evaluated cisplatin's in vivo genotoxic potential by analyzing peripheral blood for Pig-a mutant phenotype erythrocytes and for chromosomal damage in the form of micronuclei. Mutant phenotype reticuloyte and erythrocyte frequencies, based on anti-CD59 antibody labeling and flow cytometric analysis, were determined in male Sprague Dawley rats treated for 28 consecutive days (days 1-28) with up to 0.4 mg cisplatin/kg/day, and sampled on days -4, 15, 29, and 56. Vehicle and highest dose groups were evaluated at additional time points post-treatment up to 6 months. Day 4 and 29 blood samples were also analyzed for micronucleated reticulocyte frequency using flow cytometry and anti-CD71-based labeling. Mutant phenotype reticulocytes were significantly elevated at doses ≥0.1 mg/kg/day, and mutant phenotype erythrocytes were elevated at doses ≥0.05 mg/kg/day. In the 0.4 mg/kg/day group, these effects persisted for the 6 month observation period. Cisplatin also induced a modest but statistically significant increase in micronucleus frequency at the highest dose tested. The prolonged persistence in the production of mutant erythrocytes following cisplatin exposure suggests that this drug mutates hematopoietic stem cells and that this damage may ultimately contribute to the increased incidence of secondary leukemias seen in patients cured of primary malignancies with platinum-based regimens.
This laboratory previously described a method for scoring the incidence of peripheral blood Pig-a mutant phenotype rat erythrocytes using immunomagnetic separation in conjunction with flow cytometric analysis (In Vivo MutaFlow®). The current work extends the method to mouse blood, using the frequency of CD24-negative reticulocytes (RET(CD24-)) and erythrocytes (RBC(CD24-)) as phenotypic reporters of Pig-a gene mutation. Following assay optimization, reconstruction experiments demonstrated the ability of the methodology to return expected values. Subsequently, the responsiveness of the assay to the genotoxic carcinogens N-ethyl-N-nitrosourea, benzo[a]pyrene, and ethyl carbamate was studied in male CD-1 mice exposed for 3 days to several dose levels via oral gavage. Blood samples were collected on Day 4 for micronucleated reticulocyte analyses, and on Days 15 and 30 for determination of RET(CD24-) and RBC(CD24-) frequencies. The same design was used to study pyrene, with benzo[a]pyrene as a concurrent positive control, and methyl carbamate, with ethyl carbamate as a concurrent positive control. The three genotoxicants produced marked dose-related increases in the frequencies of Pig-a mutant phenotype cells and micronucleated reticulocytes. Ethyl carbamate exposure resulted in moderately higher micronucleated reticulocyte frequencies relative to N-ethyl-N-nitrosourea or benzo[a]pyrene (mean ± SEM = 3.0 ± 0.36, 2.3 ± 0.17, and 2.3 ± 0.49%, respectively, vs. an aggregate vehicle control frequency of 0.18 ± 0.01%). However, it was considerably less effective at inducing Pig-a mutant cells (e.g., Day 15 mean no. RET(CD24-) per 1 million reticulocytes = 7.6 ± 3, 150 ± 9, and 152 ± 43 × 10(-6), respectively, vs. an aggregate vehicle control frequency of 0.6 ± 0.13 × 10(-6)). Pyrene and methyl carbamate, tested to maximum tolerated dose or limit dose levels, had no effect on mutant cell or micronucleated reticulocyte frequencies. Collectively, these results demonstrate the utility of the cross-species Pig-a and micronucleated reticulocyte assays, and add further support to the value of studying both endpoints in order to cover two distinct genotoxic modes of action.
The rodent Pig-a assay is an in vivo method for the detection of gene mutation, where lack of glycosylphosphatidylinositol-anchored proteins on the surface of circulating red blood cells (RBCs) serves as a reporter for Pig-a gene mutation. In the case of rats, the frequency of mutant phenotype RBCs is measured via fluorescent anti-CD59 antibodies and flow cytometry. The Pig-a assay meets the growing expectations for novel approaches in animal experimentation not only focusing on the scientific value of the assay but also on animal welfare aspects (3Rs principles), for example, amenable to integration into pivotal rodent 28-day general toxicology studies. However, as recommended in the Organisation for Economic Co-operation and Development Test Guidelines for genotoxicity testing, laboratories are expected to demonstrate their proficiency. While this has historically involved the extensive use of animals, here we describe an alternative approach based on a series of blood dilutions covering a range of mutant frequencies. The experiments described herein utilized either non-fluorescent anti-CD59 antibodies to provide elevated numbers of mutant-like cells, or a low volume blood sample from a single N-ethyl-N-nitrosourea treated animal. Results from these so-called reconstruction experiments from four independent laboratories showed good overall precision (correlation coefficients: 0.9979-0.9999) and accuracy (estimated slope: 0.71-1.09) of mutant cell scoring, which was further confirmed by Bland-Altman analysis. These data strongly support the use of reconstruction experiments for training purposes and demonstrating laboratory proficiency with very few animals, an ideal situation given the typically conflicting goals of demonstrating laboratory proficiency and reducing the use of animals. Environ. Mol. Mutagen. 57:678-686, 2016. © 2016 Wiley Periodicals, Inc.
Validation of the Pig-a gene mutation assay has been based mainly on studies in male rodents. To determine if the mutagen-induced responses of the X-linked Pig-a gene differ in females compared to males, 7- or 14-week old male and female Sprague Dawley rats were exposed to N-ethyl-N-nitrosourea (ENU). In the study with the 7-week old rats, exposure was to 0, 1, 5 or 25mg ENU/kg/day for three consecutive days (study Days 1-3). Pig-a mutant phenotype reticulocyte (RET(CD59-)) and mutant phenotype erythrocyte (RBC(CD59-)) frequencies were determined on study Days -4, 15, 29 and 46 using immunomagnetic separation in conjunction with flow cytometric analysis (In Vivo MutaFlow®). Additionally, blood samples collected on Day 4 were analysed for micronucleated reticulocyte (MN-RET) frequency (In Vivo MicroFlow®). The percentage of reticulocytes (%RET) was markedly higher in the 7-week old males compared to females through Day 15 (2.39-fold higher on Day -4). At 25mg/kg/day, ENU reduced Day 4 RET frequencies in both sexes, and the two highest dose levels resulted in elevated MN-RET frequencies, with no sex or treatment × sex interaction. The two highest dose levels significantly elevated the frequencies of mean RET(CD59-) and RBC(CD59-) in both sexes from Day 15 onward. RET(CD59-) and RBC(CD59-) frequencies were somewhat lower for females compared to males at the highest dose level studied, and differences in RET(CD59-) resulted in a statistically significant interaction effect of treatment × sex. In the study with 14-week old rats, treatment was for 3 days with 0 or 25mg ENU/kg/day. RET frequencies differed to a lesser degree between the sexes, and in this case there was no evidence of a treatment × sex interaction. These results suggest that the slightly higher response in younger males than in the younger females may be related to differences in erythropoiesis function at that age. In conclusion, while some quantitative differences were noted, there were no qualitative differences in how males and females responded to a prototypical mutagen, and support the contention that both sexes are equally acceptable for Pig-a gene mutation studies.
Determination of the mode of action of carcinogenic agents is an important factor in risk assessment and regulatory practice. To assess the ability of the erythrocyte-based Pig-a mutation assay to discriminate between genotoxic and non-genotoxic modes of action, the mutagenic response of Sprague Dawley rats exposed to methyl carbamate (MC) or ethyl carbamate (EC) was investigated. EC, a potent carcinogen, is believed to induce DNA damage through the formation of a DNA-reactive epoxide group, whereas the closely structurally related compound, MC, cannot form this epoxide and its weaker carcinogenic activity is thought to be secondary to inflammation and promotion of cell proliferation. The frequency of Pig-a mutant phenotype cells was monitored before, during, and after 28 consecutive days of oral gavage exposure to either MC (doses ranging from 125 to 500 mg/kg/day) or EC (250 mg/kg/day). Significant increases in the frequency of mutant reticulocytes were observed from Days 15 through 43, with a peak mean frequency of 19.9×10(-6) on Day 29 (i.e. 24.9-fold increase relative to mean vehicle control across all four sampling times). As expected, mutant erythrocyte responses lagged behind mutant reticulocyte responses, with a maximal mean frequency of 8.2×10(-6) on Day 43 (i.e. 16.4-fold increase). No mutagenic effects were observed with MC. A second indicator of in vivo genotoxicity, peripheral blood micronucleated reticulocytes, was also studied. This endpoint was responsive to EC (3.3-fold mean increase), but not to MC. These results support the hypothesis that genotoxicity contributes to the carcinogenicity of EC but not of MC, and illustrates the value of the Pig-a assay for discriminating between genotoxic and non-genotoxic modes of action.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.