Theoretical gas-surface models that describe adsorption over a wide range of coverages can provide qualitative insight into chemical phenomena that occur at intermediate to high coverages, such as subsurface adsorption, surface reconstruction, and industrial heterogeneous catalysis. However, most atomistic, quantum-mechanical models of gas-surface adsorption are limited to low adsorbate coverage due to the large computational cost of models built using many surface atoms and adsorbates.To investigate adsorption in the subsurface of a crystalline solid at high coverage, we present a lattice-gas adsorption model that includes surface and subsurface sites of the solid, and is fully parametrized using density functional theory. We apply the model to study the coverage-dependent adsorption of atomic oxygen on the Ag(111) surface. Oxygen population distributions calculated using the model show the onset of subsurface adsorption at a total coverage of approximately 1 4 monolayer, the saturation of surface adsorption at a total coverage of approximately 1 3 monolayer, and a greater accumulation of oxygen in the second rather than the first subsurface at total coverages greater than 1 2 monolayer. Computation of core-electron binding energies and projected density of states of an oxygen distribution predicted by the model reveal qualitative differences in oxygen-silver bonding at the surface and subsurface, suggesting that oxygen adsorbed in the two regions could play distinct roles in surface chemistry.
Theoretical gas-surface models that describe adsorption over a wide range of coverages can provide qualitative insight into chemical phenomena that occur at intermediate to high coverages, such as subsurface adsorption, surface reconstruction, and industrial heterogeneous catalysis. However, most atomistic, quantum-mechanical models of gas-surface adsorption are limited to low adsorbate coverage due to the large computational cost of models built using many surface atoms and adsorbates. To investigate adsorption in the subsurface of a crystalline solid with increasing coverage, we present a lattice-gas adsorption model that includes surface and subsurface sites of the solid, and is fully parametrized using density functional theory. We apply the model to study the competition between surface and subsurface adsorption of atomic oxygen on the Ag(111) surface. Oxygen population distributions calculated using the model show the onset of subsurface adsorption at a total coverage of approximately 1/4 monolayer and a greater accumulation of oxygen in the second rather than the first subsurface at total coverages greater than 1/2 monolayer. Computation of core-electron binding energies and projected density of states of an oxygen distribution predicted by the model reveal qualitative differences in oxygen-silver bonding at the surface and subsurface, suggesting that oxygen adsorbed in the two regions could play distinct roles in surface chemistry.
Theoretical gas-surface models that describe adsorption over a wide range of coverages can provide qualitative insight into chemical phenomena that occur at intermediate to high coverages, such as subsurface adsorption, surface reconstruction, and industrial heterogeneous catalysis. However, most atomistic, quantum-mechanical models of gas-surface adsorption are limited to low adsorbate coverage due to the large computational cost of models built using many surface atoms and adsorbates. To investigate adsorption in the subsurface of a crystalline solid at high coverage, we present a lattice-gas adsorption model that includes surface and subsurface sites of the solid, and is fully parametrized using density functional theory. We apply the model to study the coverage-dependent adsorption of atomic oxygen on the Ag(111) surface. Oxygen population distributions calculated using the model show the onset of subsurface adsorption at a total coverage of approximately 1/4 monolayer, the saturation of surface adsorption at a total coverage of approximately 1/3 monolayer, and a greater accumulation of oxygen in the second rather than the first subsurface at total coverages greater than 1/2 monolayer. Computation of core-electron binding energies and projected density of states of an oxygen distribution predicted by the model reveal qualitative differences in oxygen-silver bonding at the surface and subsurface, suggesting that oxygen adsorbed in the two regions could play distinct roles in surface chemistry.
Theoretical gas-surface models that describe adsorption over a wide range of coverages can provide qualitative insight into chemical phenomena that occur at intermediate to high coverages, such as subsurface adsorption, surface reconstruction, and industrial heterogeneous catalysis. However, most atomistic, quantum-mechanical models of gassurface adsorption are limited to low adsorbate coverage due to the large computational cost of models built using many surface atoms and adsorbates. To investigate adsorption in the subsurface of a crystalline solid with increasing coverage, we present a lattice-gas adsorption model that includes surface and subsurface sites of the solid, and is fully parametrized using density functional theory. We apply the model to study the competition between surface and subsurface adsorption of atomic oxygen on the Ag(111) surface. Oxygen population distributions calculated using the model show the onset of subsurface adsorption at a total coverage of approximately 1 4 monolayer and a greater accumulation of oxygen in the second rather than the first subsurface at total coverages greater than 1 2 monolayer. Computation of core-electron binding energies and projected density of states of an oxygen distribution predicted by the model reveal qualitative differences in oxygen-silver bonding at the surface and subsurface, suggesting that oxygen adsorbed in the two regions could play distinct roles in surface chemistry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.