Ending the COVID-19 pandemic will require long-lived immunity to SARS-CoV-2. Here, we evaluate 254 COVID-19 patients longitudinally up to eight months and find durable broad-based immune responses. SARS-CoV-2 spike binding and neutralizing antibodies exhibit a bi-phasic decay with an extended half-life of >200 days suggesting the generation of longer-lived plasma cells. SARS-CoV-2 infection also boosts antibody titers to SARS-CoV-1 and common betacoronaviruses. In addition, spike-specific IgG+ memory B cells persist, which bodes well for a rapid antibody response upon virus re-exposure or vaccination. Virus-specific CD4+ and CD8+ T cells are polyfunctional and maintained with an estimated half-life of 200 days. Interestingly, CD4+ T cell responses equally target several SARS-CoV-2 proteins, whereas the CD8+ T cell responses preferentially target the nucleoprotein, highlighting the potential importance of including the nucleoprotein in future vaccines. Taken together, these results suggest that broad and effective immunity may persist long-term in recovered COVID-19 patients.
The emergence of SARS-CoV-2 variants with mutations in the spike protein is raising concerns about the efficacy of infection-or vaccine-induced antibodies. We compared antibody binding and live virus neutralization of sera from naturally infected and Moderna-vaccinated individuals against two SARS-CoV-2 variants: B.1 containing the spike mutation D614G and the emerging B.1.351 variant containing additional spike mutations and deletions. Sera from acutely infected and convalescent COVID-19 patients exhibited a 3-fold reduction in binding antibody titers to the B.1.351 variant receptor-binding domain of the spike protein and a 3.5-fold reduction in neutralizing antibody titers against SARS-CoV-2 B.1.351 variant compared to the B.1 variant. Similar results were seen with sera from Moderna-vaccinated individuals. Despite reduced antibody titers against the B.1.351 variant, sera from infected and vaccinated individuals containing polyclonal antibodies to the spike protein could still neutralize SARS-CoV-2 B.1.351, suggesting that protective humoral immunity may be retained against this variant.
SUMMARYEnding the COVID-19 pandemic will require long-lived immunity to SARS-CoV-2. We evaluated 254 COVID-19 patients longitudinally from early infection and for eight months thereafter and found a predominant broad-based immune memory response. SARS-CoV-2 spike binding and neutralizing antibodies exhibited a bi-phasic decay with an extended half-life of >200 days suggesting the generation of longer-lived plasma cells. In addition, there was a sustained IgG+ memory B cell response, which bodes well for a rapid antibody response upon virus re-exposure. Polyfunctional virus-specific CD4+ and CD8+ T cells were also generated and maintained with an estimated half-life of 200 days. Interestingly, the CD4+ T cell response equally targeted several SARS-CoV-2 proteins, whereas the CD8+ T cell response preferentially targeted the nucleoprotein, highlighting the importance of including the nucleoprotein as a potential vaccine antigen. Taken together, these results suggest that broad and effective immunity may persist long-term in recovered COVID-19 patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.