Caries and periodontitis, the most wide-spread oral diseases around the world, are caused by bacterial adherence and biofilm formation onto the natural as well as restored tooth surface. One possible way to prevent the pathogenic consequences of intraoral biofilm formation might be
the modification of the tooth surface by application of an anti-adhesive coating that interferes with the bacterial attachment and subsequent bacterial accumulation. The objective of this study was to investigate the effect of an experimental, low surface free energy nano-composite coating
material on biofilm formation in situ. For this purpose, an organic/inorganic nano-composite coating (NANOMER®, INM, Saarbrücken, Germany) with a surface free energy of 18–20 mJ/m2 was applied to enamel as well as titanium specimens. The nano-composite
coated specimens and un-coated controls were attached to removable intraoral splints and carried by volunteers over 24 h in the oral cavity. After intraoral exposure, specimens were processed for transmission electron microscopic analysis. On non-coated enamel and titanium control samples
a multi-layer of adherent bacteria was found. In contrast, on nano-composite coated specimens strongly reduced biofilm formation was observed. In most areas of the surface-coated specimens only a 10–20 nm thick electron dense layer of adsorbed salivary proteins with adherent protein
agglomerates of 20–80 nm diameter could be detected. In addition, detachment of the adsorbed biofilm from the nano-composite coated surfaces was evident in electron microscopic micrographs. The present investigation provides ultrastructural evidence that it is possible to cover enamel
as well as titanium with a nano-composite coating revealing easy-to-clean surface properties that cause reduced biofilm formation and accelerated removal of adherent biofilms under oral conditions.
This paper provides a selective description of the development of nanostructured materials and the fabrication of the devices for optical applications. Examples are interference coatings, refractive and diffractive lenses, and macro‐ and micro‐GRIN (graded refractive index) optical elements. Hybrid materials containing nanoparticles are of particular interest for the production of optical elements because, by exploiting the intrinsic solid state properties of the nanoparticles, nanocomposites can be tailored to exhibit the desired properties. A particular advantage of wet chemical processing lies in its great flexibility for depositing functional coatings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.