According to the basal ganglia-thalamocortical circuit model, dopamine depletion in the nigrostriatal system leads to hypoactivation in the supplementary motor area (SMA) and the primary motor cortex (M1) in Parkinson's disease. This functional cortical deafferentation and its reversibility by levodopa (L-dopa) treatment has been established in previous studies for SMA but remains controversial for M1. We used functional MRI (fMRI) and a simple finger opposition task to correlate blood oxygenation level-dependent (BOLD) signal changes with motor performance, assessed separately for each hand between fMRI scanning sessions. Eight drug-naive patients with an akinetic idiopathic hemiparkinsonian syndrome (Hoehn and Yahr stage 1-1.5) and 10 healthy controls were studied. Patients performed a simple, auditory-paced random finger- opposition task every 3 s before and repeatedly every 20 min after intake of 300 mg of fast-release L-dopa. M1 contralateral to the affected hand and SMA, predominantly of the contralateral side, showed a BOLD signal increase after L-dopa intake. Furthermore, comparing BOLD responses of M1 and SMA between the patients and controls revealed that these areas were hypoactive before L-dopa treatment. Signal changes in M1 and SMA were highly correlated with motor performance, which increased after L-dopa intake. This result is not confounded by a performance effect because the motor task employed during scanning was identical throughout all sessions. In contrast to previous imaging studies in which cortical reorganization in Parkinson's disease was thought to have caused M1 hyperactivation, our data are in accordance with the hypothesis that, in de novo idiopathic hemiparkinsonian syndrome, motor cortex hypoactivation in contralateral M1 and bilateral SMA is caused by a decreased input from the subcortical motor loop, which is reversible by L-dopa.
Parkinson's disease (PD) is a heterogeneous disorder that leads to variable expression of several different motor symptoms. While changes in firing rate, pattern, and oscillation of basal ganglia neurons have been observed in PD patients and experimental animals, there is limited evidence linking them to specific motor symptoms. Here we examined this relationship using extracellular recordings of subthalamic nucleus neurons from 19 PD patients undergoing surgery for deep brain stimulation. For each patient, Ն10 single units and/or multi-units were recorded in the OFF medication state. We correlated the proportion of neurons displaying different activities with preoperative Unified Parkinson's Disease Rating Scale subscores (OFF medication). The mean spectral power at sub-beta frequencies and percentage of units oscillating at beta frequencies were positively correlated with the axial and limb rigidity scores, respectively. The percentage of units oscillating at gamma frequency was negatively correlated with the bradykinesia scores. The mean intraburst rate was positively correlated with both bradykinesia and axial scores, while the related ratio of interspike intervals below/above 10 ms was positively correlated with these symptoms and limb rigidity. None of the activity parameters correlated with tremor. The grand average of all the significantly correlated subthalamic nucleus activities accounted for Ͼ60% of the variance of the combined bradykinetic-rigid and axial scores. Our results demonstrate that the occurrence of alterations in the rate and pattern of basal ganglia neurons could partly underlie the variability in parkinsonian phenotype.
Effective management and development of new treatment strategies of motor symptoms in Parkinson's disease (PD) largely depend on clinical rating instruments like the Unified PD rating scale (UPDRS) and the modified abnormal involuntary movement scale (mAIMS). Regarding inter-rater variability and continuous monitoring, clinical rating scales have various limitations. Patient-administered questionnaires such as the PD home diary to assess motor stages and fluctuations in late-stage PD are frequently used in clinical routine and as clinical trial endpoints, but diary/questionnaire are tiring, and recall bias impacts on data quality, particularly in patients with cognitive dysfunction or depression. Consequently, there is a strong need for continuous and objective monitoring of motor symptoms in PD for improving therapeutic regimen and for usage in clinical trials. Recent advances in battery technology, movement sensors such as gyroscopes, accelerometers and information technology boosted the field of objective measurement of movement in everyday life and medicine using wearable sensors allowing continuous (long-term) monitoring. This systematic review summarizes the current wearable sensor-based devices to objectively assess the various motor symptoms of PD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.