SummaryBorrelia burgdorferi, the aetiological agent of Lyme disease, employs sophisticated means to survive in diverse mammalian hosts. Recent studies demonstrated that acquisition of complement regulators factor H and factor H-like protein-1 (FHL-1) allows spirochetes to resist complement-mediated killing. Serum-resistant B. burgdorferi express up to five distinct complement regulator-acquiring surface proteins (CRASPs) that bind factor H and/or FHL-1. In this study we have identified and characterized one of those B. burgdorferi proteins, named BbCRASP-2. BbCRASP-2 is distinct from the four previously identified factor H/FHL-1-binding CRASPs of B. burgdorferi strains. The single copy of the gene encoding BbCRASP-2, cspZ, is located on the linear plasmid lp28-3. BbCRASP-2 is highly divergent from the factor H/FHL-1-binding protein BbCRASP-1 and from members of the factor H-binding Erp (OspE/F-related) protein family. Peptide mapping analysis revealed that the factor H/FHL-1 binding site is discontinuous and it was found that C-terminal truncations abrogate factor H and FHL-1 binding. The predominant BbCRASP-2 binding site of both host complement regulators was mapped to the short consensus repeat 7 (SCR 7). Factor H and FHL-1 bound to BbCRASP-2 maintain cofactor activity for factor I-mediated C3b inactivation and accelerate the decay of the C3 convertase. Expression of BbCRASP-2 in serum-sensitive B. burgdorferi mutant B313 increased resistance to complementmediated lysis. The characterization of BbCRASP-2 now provides a complete picture of the three diverse complement regulator-binding protein families of B. burgdorferi yielding new insights into the pathogenesis of Lyme disease.
The nerve terminal proteome governs neurotransmitter release as well as the structural and functional dynamics of the presynaptic compartment. In order to further define specific presynaptic subproteomes we used subcellular fractionation and a monoclonal antibody against the synaptic vesicle protein SV2 for immunoaffinity purification of two major synaptosome-derived synaptic vesicle-containing fractions: one sedimenting at lower and one sedimenting at higher sucrose density. The less dense fraction contains free synaptic vesicles, the denser fraction synaptic vesicles as well as components of the presynaptic membrane compartment. These immunoisolated fractions were analyzed using the cationic benzyldimethyl-n-hexadecylammonium chloride (BAC) polyacrylamide gel system in the first and sodium dodecyl sulfatepolyacrylamide gel electrophoresis in the second dimension.Protein spots were subjected to analysis by matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI TOF MS). We identified 72 proteins in the free vesicle fraction and 81 proteins in the plasma membrane-containing denser fraction. Synaptic vesicles contain a considerably larger number of protein constituents than previously anticipated. The plasma membrane-containing fraction contains synaptic vesicle proteins, components of the presynaptic fusion and retrieval machinery and numerous other proteins potentially involved in regulating the functional and structural dynamics of the nerve terminal.
Synaptic vesicles are key organelles in neurotransmission. Their functions are governed by a unique set of integral and peripherally associated proteins. To obtain a complete protein inventory, we immunoisolated synaptic vesicles from rat brain to high purity and performed a gel-based analysis of the synaptic vesicle proteome. Since the high hydrophobicity of integral membrane proteins hampers their resolution by gel electrophoretic techniques, we applied in parallel three different gel electrophoretic methods for protein separation prior to MS. Synaptic vesicle proteins were subjected to either 1-D SDS-PAGE along with nano-LC ESI-MS/MS or to the 2-D gel electrophoretic techniques benzyldimethyl-n-hexadecylammonium chloride (BAC)/SDS-PAGE, and double SDS (dSDS)-PAGE in combination with MALDI-TOF-MS. We demonstrate that the combination of all three methods provides a comprehensive survey of the proteinaceous inventory of the synaptic vesicle membrane compartment. The identified synaptic vesicle proteins include transporters, soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs), synapsins, rab and rab-interacting proteins, additional guanine nucleotide triphosphate (GTP) binding proteins, cytoskeletal proteins, and proteins modulating synaptic vesicle exo- and endocytosis. In addition, we identified novel proteins of unknown function. Our results demonstrate that the parallel application of three different gel-based approaches in combination with mass spectrometry permits a comprehensive analysis of the synaptic vesicle proteome that is considerably more complex than previously anticipated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.