Dendritic architecture provides the structural substrate for myriads of input and output synapses in the brain and for the integration of presynaptic inputs. Understanding mechanisms of evolution and development of neuronal shape and its respective function is thus a formidable problem in neuroscience. A fundamental prerequisite for finding answers is a precise quantitative analysis of neuronal structure in situ and in vivo. Therefore we have developed a tool set for automatic geometric reconstruction of neuronal architecture from stacks of confocal images. It provides exact midlines, diameters, surfaces, volumes, and branch point locations and allows analysis of labeled molecule distribution along neuronal surfaces as well as direct export into modeling software. We show the high accuracy of geometric reconstruction and the analysis of putative input synapse distribution throughout entire dendritic trees from in situ light microscopy preparations as a possible application. The binary version of the reconstruction module is downloadable at no cost.
Insect flight is one of the fastest, most intense and most energy-demanding motor behaviors. It is modulated on multiple levels by the biogenic amine octopamine. Within the CNS, octopamine acts directly on the flight central pattern generator, and it affects motivational states. In the periphery, octopamine sensitizes sensory receptors, alters muscle contraction kinetics, and enhances flight muscle glycolysis. This study addresses the roles for octopamine and its precursor tyramine in flight behavior by genetic and pharmacological manipulation in Drosophila. Octopamine is not the natural signal for flight initiation because flies lacking octopamine [tyramine--hydroxylase (TH) null mutants] can fly. However, they show profound differences with respect to flight initiation and flight maintenance compared with wild-type controls. The morphology, kinematics, and development of the flight machinery are not impaired in TH mutants because wing-beat frequencies and amplitudes, flight muscle structure, and overall dendritic structure of flight motoneurons are unaffected in TH mutants. Accordingly, the flight behavior phenotypes can be rescued acutely in adult flies. Flight deficits are rescued by substituting octopamine but also by blocking the receptors for tyramine, which is enriched in TH mutants. Conversely, ablating all neurons containing octopamine or tyramine phenocopies TH mutants. Therefore, both octopamine and tyramine systems are simultaneously involved in regulating flight initiation and maintenance. Different sets of rescue experiments indicate different sites of action for both amines. These findings are consistent with a complex system of multiple amines orchestrating the control of motor behaviors on multiple levels rather than single amines eliciting single behaviors.
Duch C, Vonhoff F, Ryglewski S. Dendrite elongation and dendritic branching are affected separately by different forms of intrinsic motoneuron excitability. J Neurophysiol 100: 2525-2536, 2008. First published August 20, 2008 doi:10.1152/jn.90758.2008. Dendrites are the fundamental determinant of neuronal wiring. Consequently dendritic defects are associated with numerous neurological diseases and mental retardation. Neuronal activity can have profound effects on dendritic structure, but the mechanisms controlling distinct aspects of dendritic architecture are not fully understood. We use the Drosophila genetic model system to test the effects of altered intrinsic excitability on postembryonic dendritic architecture development. Targeted dominant negative knock-downs of potassium channel subunits allow for selectively increasing the intrinsic excitability of a selected subset of motoneurons, whereas targeted expression of a genetically modified noninactivating potassium channel decrease intrinsic excitability in vivo. Both manipulations cause significant dendritic overgrowth, but by different mechanisms. Increased excitability causes increased dendritic branch formation, whereas decreased excitability causes increased dendritic branch elongation. Therefore dendritic branching and branch elongation are controlled by separate mechanisms that can be addressed selectively in vivo by different manipulations of neuronal intrinsic excitability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.