Background: To compare and assess the efficacy of three surgical methods for the treatment of acute submacular hemorrhage (ASH): pneumatic displacement with C2F6, in combination with intravitreal injection of bevacizumab and rtPA, pars plana vitrectomy (PPV) with intravitreal injection of gas (C2F6), bevacizumab and subretinal injection of recombinant tissue plasminogen activator (rtPA), pars plana vitrectomy (PPV) with intravitreal injection of gas (C2F6), bevacizumab and intravitreal injection of recombinant tissue plasminogen activator (rtPA). Methods: The study included 85 patients with ASH. In the group without PPV (A), patients were treated with intravitreal injection of C2F6, bevacizumab and rtPA. In the second and third group, patients underwent a PPV, intravitreal injection of bevacizumab, pneumatic displacement with C2F6 and a subretinal (B) or intravitreal (C) injection of recombinant tissue plasminogen activator (rt PA). Results: In group A, mean BCVA increased from preop logMAR 1.41 to 1.05, in group B from 1.46 to 1.28 and in group C from 1.63 to 1.33. In group A, CFT changed from 764 ± 340 μm at time point 0 to 246 ± 153 μm at time point 1, in group B from 987 ± 441 μm to 294 ± 166 μm and in group C from 642 ± 322 μm to 418 ± 364 μm. Patients had an average of 5 injections after surgery. Conclusion: Our study demonstrates that the three methods are equally effective in improving the morphology and the BCVA of patients with ASH.
Multiple-parametric small animal experiments require, by their very nature, a sufficient number of animals which may need to be large to obtain statistically significant results.(1) For this reason database-related systems are required to collect the experimental data as well as to support the later (re-) analysis of the information gained during the experiments. In particular, the monitoring of animal welfare is simplified by the inclusion of warning signals (for instance, loss in body weight >20%). Digital patient charts have been developed for human patients but are usually not able to fulfill the specific needs of animal experimentation. To address this problem a unique web-based monitoring system using standard MySQL, PHP, and nginx has been created. PHP was used to create the HTML-based user interface and outputs in a variety of proprietary file formats, namely portable document format (PDF) or spreadsheet files. This article demonstrates its fundamental features and the easy and secure access it offers to the data from any place using a web browser. This information will help other researchers create their own individual databases in a similar way. The use of QR-codes plays an important role for stress-free use of the database. We demonstrate a way to easily identify all animals and samples and data collected during the experiments. Specific ways to record animal irradiations and chemotherapy applications are shown. This new analysis tool allows the effective and detailed analysis of huge amounts of data collected through small animal experiments. It supports proper statistical evaluation of the data and provides excellent retrievable data storage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.