Intravenous lipid emulsions are biocompatible formulations used as clinical nutrition products and lipid-based delivery systems for sparingly soluble drugs. However, the particle-size distribution is associated with risks of embolism. Accordingly, the mean particle diameter (MPD) and particle-distribution tailing (characterized as the pFAT5 value) are critical quality attributes that ensure patient safety. Compliance with the limits stated in the United States Pharmacopoeia is ensured by high-pressure homogenization, the final step of the manufacturing process. The US Food and Drug Administration’s Quality-by-Design approach requires a control strategy based on deep process understanding to ensure that products have a consistent and predefined quality. Here we investigated the process parameters of a jet-valve high-pressure homogenizer, specifically their effect on the MPD, pFAT5 value and droplet count (determined by microscopy) during the production of a Lipofundin MCT/LCT 20% formulation. We provide deep insight into droplet breakup and coalescence behavior when varying the process pressure, emulsion temperature and number of homogenization cycles. We found that high shear forces are not required to reduce the pFAT5 value of the particle distribution. Finally, we derived a control strategy for a rapid and cost-efficient two-cycle process that ensures patient safety over a large control space.
The good manufacturing practices (GMP) and process analytical technology (PAT) initiatives of the US Food and Drug Administration, in conjunction with International Council for Harmonisation (ICH) quality guidelines Q8, Q9, and Q10, ensure that manufacturing processes for parenteral formulations meet the requirements of increasingly strict regulations. This involves the selection of suitable process analytics for process integration and aseptic processing. In this article, we discuss the PAT requirements for the GMP-compliant manufacturing of parenteral lipid emulsions, which can be used for clinical nutrition or for the delivery of lipophilic active ingredients. There are risks associated with the manufacturing processes, including the potential for unstable emulsions and the formation of large droplets that can induce embolisms in the patient. Parenteral emulsions are currently monitored offline using a statistical approach. Inline analytics, supplemented by measurements of zeta potential, could minimize the above risks. Laser scanning technology, ultrasound attenuation spectroscopy, and photo-optical sensors combined with image analysis may prove to be useful PAT methods. In the future, these technologies could lead to better process understanding and control, thus improving production efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.