Aims: The objective of this work was to evaluate the use of wild‐type GFP and mutant forms thereof as reporter for gene expression under high pressure conditions.
Methods and Results: The intensity of fluorescence after high pressure treatment was checked by subjecting cells, crude protein extracts containing GFPs and purified GFPs to pressures ranging from 100 MPa to 900 MPa. All tested GFP’s retained fluorescence up to 600 MPa without loss of intensity. Expression of GFP under sublethal conditions was investigated in Escherichia coli with plasmid pQBI63, in which rsGFP is placed downstream of the T7 RNA polymerase binding site. T7 RNA polymerase is controlled in E. coli BL21 (DE3) pLysS by an IPTG inducible lacUV5 promoter. A pressure induced increase of GFP expression was monitored at 50 Mpa and 70 MPa.
Conclusions: Fluorescence of GFPs is not influenced at pressures at which protein expression still occurs. We showed that the expression system used is inducible by pressurized conditions.
Significance and Impact of the Study: This study proved GFP to be a suitable reporter for gene expression studies capable to detect pressure induced gene expression.
Green fluorescent protein (GFP) is widely used as a marker in molecular and cell biology. For its use in high-pressure microbiology experiments, its fluorescence under pressure was recently investigated. Changes in fluorescence with pressure were found. To find out whether these are related to structural changes, we investigated the pressure stability of wild-type GFP (wtGFP) and three of its red shift mutants (AFP, GFP(mut1), and GFP(mut2)) using Fourier transform infrared spectroscopy. For the wt GFP, GFP(mut1), and GFP(mut2) we found that up to 13-14 kbar the secondary structure remains intact, whereas AFP starts unfolding around 10 kbar. The 3-D structure is held responsible for this high-pressure stability. Previously observed changes in fluorescence at low pressure are rationalized in terms of the pressure-induced elastic effect. Above 6 kbar, loss of fluorescence is due to aggregation. Revisiting the temperature stability of GFP, we found that an intermediate state is populated along the unfolding pathway of wtGFP. At higher temperatures, the unfolding resulted in the formation of aggregates of wtGFP and its mutants.
High hydrostatic pressure (HHP) exerts diverse effects on microorganisms, leading to stress response and cell death. While inactivation of microorganisms by lethal HHP is well investigated in the context of food preservation and the hygienic safety of minimal food processes, sublethal HHP stress response and its effect on adaptation and cross-protection is less understood. In this study, the HHP stress response of Lactobacillus sanfranciscensis was characterized and compared with cold, heat, salt, acid and starvation stress at the proteome level by using 2-DE so as to provide insight into general versus specific stress responses. Sixteen proteins were found to be affected by HHP and were identified by using N-terminal amino acid sequencing and MS. Only one slightly increased protein was specific to the HHP response and showed homology to a clp protease. The other proteins were influenced by most of the investigated stresses in a similar way as HHP. The highest similarity in the HHP proteome was found to be with cold- and NaCl-stressed cells, with 11 overlapping proteins. At the proteome level, L. sanfranciscensis appears to use overlapping subsets of stress-inducible proteins rather than stereotype responses. Our data suggest that a specific pressure response does not exist in this bacteria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.