Mononuclear phagocytes are an important component of an innate immune system perceived as a system ready to react upon encounter of pathogens.Here, we show that in response to microbial stimulation, mononuclear phagocytes residing in nonmucosal lymphoid organs of germ-free mice failed to induce expression of a set of inflammatory response genes, including those encoding the various type I interferons (IFN-I). Consequently, NK cell priming and antiviral immunity were severely compromised. Whereas pattern recognition receptor signaling and nuclear translocation of the transcription factors NF-kB and IRF3 were normal in mononuclear phagocytes of germ-free mice, binding to their respective cytokine promoters was impaired, which correlated with the absence of activating histone marks. Our data reveal a previously unrecognized role for postnatally colonizing microbiota in the introduction of chromatin level changes in the mononuclear phagocyte system, thereby poising expression of central inflammatory genes to initiate a powerful systemic immune response during viral infection.
c Beta interferon (IFN-) is a major component of innate immunity in mammals, but information on the in vivo source of this cytokine after pathogen infection is still scarce. To identify the cell types responsible for IFN- production during viral encephalitis, we used reporter mice that express firefly luciferase under the control of the IFN- promoter and stained organ sections with luciferase-specific antibodies. Numerous luciferase-positive cells were detected in regions of La Crosse virus (LACV)-infected mouse brains that contained many infected cells. Double-staining experiments with cell-type-specific markers revealed that similar numbers of astrocytes and microglia of infected brains were luciferase positive, whereas virus-infected neurons rarely contained detectable levels of luciferase. Interestingly, if a mutant LACV unable of synthesizing the IFN-antagonistic factor NSs was used for challenge, the vast majority of the IFN--producing cells in infected brains were astrocytes rather than microglia. Similar conclusions were reached in a second series of experiments in which conditional reporter mice expressing the luciferase reporter gene solely in defined cell types were infected with wild-type or mutant LACV. Collectively, our data suggest that glial cells rather than infected neurons represent the major source of IFN- in LACV-infected mouse brains. They further indicate that IFN- synthesis in astrocytes and microglia is differentially affected by the viral IFN antagonist, presumably due to differences in LACV susceptibility of these two cell types.
Deeg et al. show a novel line of transgenic mice expressing restriction factor MxA exhibits robust resistance to influenza viruses of avian but not human origin. In vivo evasion of MxA is mediated by distinct amino acids in the nucleoprotein of human influenza viruses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.