The homoleptic 1:1 Lewis pair (LP) complex [MesTe(TeMes2)]O3SCF3 (1) featuring the cation [MesTe(TeMes2)](+) (1a) was obtained by the reaction of Mes2Te with HO3SCF3. The reaction of 1 with Ph3E (E = P, As, Sb, Bi) proceeded with substitution of Mes2Te and provided the heteroleptic 1:1 LP complexes [MesTe(EPh3)]O3SCF3 (2, E = P; 3, E = As) and [MesTe(SbPh3)][Ph2Sb(O3SCF3)2] (4) featuring the cations [MesTe(EPh3)](+) (2a, E = P; 3a, E = As; 4a, E = Sb) and the anion [Ph2Sb(O3SCF3)2](-) (4b). In the reaction with Ph3Bi, the crude product contained the cation [MesTe(BiPh3)](+) (5a) and the anion [Ph2Bi(O3SCF3)2](-) (5b); however, the heteroleptic 1:1 LP complex [MesTe(BiPh3)][Ph2Bi(O3SCF3)2] (5) could not be isolated because of its limited stability. Instead, fractional crystallization furnished a large amount of Ph2BiO3SCF3 (6), which was also obtained by the reaction of Ph3Bi with HO3SCF3. The formation of the anions 4b and 5b involves a phenyl group migration from Ph3E (E = Sb, Bi) to the MesTe(+) cation and afforded MesTePh as the byproduct, which was identified in the mother liquor. The heteroleptic 1:1 LP complexes 2-4 were also obtained by the one-pot reaction of Mes2Te, Ph3E (E = P, As, Sb) and HO3SCF3. Compounds 1-4 and 6 were investigated by single-crystal X-ray diffraction. The molecular structures of 1a-4a were used for density functional theory calculations at the B3PW91/TZ level of theory and studied using natural bond order (NBO) analyses as well as real-space bonding descriptors derived from an atoms-in-molecules (AIM) analysis of the theoretically obtained electron density. Additionally, the electron localizability indicator (ELI-D) and the delocalization index are derived from the corresponding pair density.
This microreview summarizes recent research in the field of artificial nucleases, in particular those based on copper(II) in an N‐donating ligand environment. This review is divided into three parts describing different ligand classes that have shown promising results in DNA cleavage chemistry: aromatic N‐donors, aliphatic N‐donors, and peptide ligands. Whereas nature has created very efficient nucleases, artificial nucleases aim at different selectivities and higher stability under various conditions. Artificial nucleases based on metal complexes comprise Lewis acidic or redox‐active metal centers allowing for either hydrolytic or oxidative DNA cleavage. The focus of our research and thus also of this microreview is copper, whose CuII ion combines both properties. Depending on the ligand scaffold and reaction conditions, either pathway or even both are thus conceivable. Those different pathways lead to molecular biological and medicinal applications.
[Cu(phen)2]2+ (phen=1,10‐phenanthroline) is the first and still one of the most efficient artificial nucleases. In general, when the phen ligand is modified, the nucleolytic activity of its CuII complex is significantly reduced. This is most likely due to higher steric bulk of such ligands and thus lower affinity to DNA. CuII complexes with phen ligands having fluorinated substituents (F, CF3, SF5, SCF3) surprisingly showed excellent DNA cleavage activity—in contrast to the unsubstituted [Cu(phen)2]2+—in the absence of the otherwise required classical, bioabundant external reducing agents like thiols or ascorbate. This nucleolytic activity correlates well with the half‐wave potentials E1/2 of the complexes. Cancer cell studies show cytotoxic effects of all complexes with fluorinated ligands in the low μm range, whereas they were less toxic towards healthy cells (fibroblasts).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.