Abstract. The usability of pulsed broadband terahertz radiation for the inspection of composite materials from the aeronautics industry is investigated, with the goal of developing a mobile time-domain spectroscopy system that operates in reflection geometry. A wide range of samples based on glass and carbon fiber reinforced plastics with various types of defects is examined using an imaging system; the results are evaluated both in time and frequency domain. The conductivity of carbon fibers prevents penetration of the respective samples but also allows analysis of coatings from the reflected THz pulses. Glass fiber composites are, in principle, transparent for THz radiation, but commonly with significant absorption for wavelengths >1 THz. Depending on depth, matrix material, and size, defects like foreign material inserts, delaminations, or moisture contamination can be visualized. If a defect is not too deep in the sample, its location can be correctly identified from the delay between partial reflections at the surface and the defect itself.
The sub-terahertz (THz) frequency band has proved to be a noteworthy option for nondestructive testing (NDT) of nonmetal aeronautics materials. Composite structures or laminates can be inspected for foreign objects (water or debris), delaminations, debonds, etc., using sub-THz sensors during the manufacturing process or maintenance. Given the harmless radiation to the human body of this frequency band, no special security measures are needed for operation. Moreover, the frequency-modulated continuous-wave sensor used in this study offers a very light, compact, inexpensive, and high-performing solution. An automated two-dimensional scanner carrying three sensors partially covering the 70- to 320-GHz band is operated, using two complementary measurement approaches: conventional focused imaging, where focusing lenses are used; and synthetic aperture (SA) or unfocused wide-beam imaging, for which lenses are no longer needed. Conventional focused imagery offers finer spatial resolutions but imagery is depth-limited due to the beam waist effect, whereas SA measurements allow imaging of thicker samples with depth-independent but coarser spatial resolutions. The present work is a compendium of a much larger study and describes the key technical aspects of the proposed imaging techniques and reports on results obtained from human-made samples (A-sandwich, C-sandwich, solid laminates) which include diverse defects and damages typically encountered in aeronautics multilayered structures. We conclude with a grading of the achieved results in comparison with measurements performed by other NDT techniques on the same samples
Radomes protecting sensitive radar, navigational, and communications equipment of, e.g., aircraft, are strongly exposed to the environment and have to withstand harsh weather conditions and potential impacts. Besides their significance to the structural integrity of the radomes, it is often crucial to optimize the composite structures for best possible radio performance. Hence, there exists a significant interest in non-destructive testing techniques, which can be used for defect inspection of radomes in field use as well as for quality inspection during the manufacturing process. Contactless millimeter-wave and terahertz imaging techniques provide millimeter resolution and have the potential to address both application scenarios. We report on our development of a three-dimensional (3D) terahertz imaging system for radome inspection during industrial manufacturing processes. The system was designed for operation within a machining center for radome manufacturing. It simultaneously gathers terahertz depth information in adjacent frequency ranges, from 70 to 110 GHz and from 110 to 170 GHz by combining two frequency modulated continuous-wave terahertz sensing units into a single measurement device. Results from spiraliform image acquisition of a radome test sample demonstrate the successful integration of the measurement system.
We present a rotational terahertz imaging system for inline nondestructive testing (NDT) of press sleeves for the paper industry during fabrication. Press sleeves often consist of polyurethane (PU) which is deposited by rotational molding on metal barrels and its outer surface mechanically processed in several milling steps afterwards. Due to a stabilizing polyester fiber mesh inlay, small defects can form on the sleeve’s backside already during the initial molding, however, they cannot be visually inspected until the whole production processes is completed. We have developed a fast-scanning frequenc-modulated continuous wave (FMCW) terahertz imaging system, which can be integrated into the manufacturing process to yield high resolution images of the press sleeves and therefore can help to visualize hidden structural defects at an early stage of fabrication. This can save valuable time and resources during the production process. Our terahertz system can record images at 0.3 and 0.5 THz and we achieve data acquisition rates of at least 20 kHz, exploiting the fast rotational speed of the barrels during production to yield sub-millimeter image resolution. The potential of automated defect recognition by a simple machine learning approach for anomaly detection is also demonstrated and discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.