Understanding the evolution of Arctic polar climate from the protracted warmth of the middle Pliocene into the earliest glacial cycles in the Northern Hemisphere has been hindered by the lack of continuous, highly resolved Arctic time series. Evidence from Lake El'gygytgyn, in northeast (NE) Arctic Russia, shows that 3.6 to 3.4 million years ago, summer temperatures were ~8°C warmer than today, when the partial pressure of CO2 was ~400 parts per million. Multiproxy evidence suggests extreme warmth and polar amplification during the middle Pliocene, sudden stepped cooling events during the Pliocene-Pleistocene transition, and warmer than present Arctic summers until ~2.2 million years ago, after the onset of Northern Hemispheric glaciation. Our data are consistent with sea-level records and other proxies indicating that Arctic cooling was insufficient to support large-scale ice sheets until the early Pleistocene.
Abstract.A 318-metre-long sedimentary profile drilled by the International Continental Scientific Drilling Program (ICDP) at Site 5011-1 in Lake El'gygytgyn, Far East Russian Arctic, has been analysed for its sedimentologic response to global climate modes by chronostratigraphic methods. The 12 km wide lake is sited off-centre in an 18 km large crater that was created by the impact of a meteorite 3.58 Ma ago. Since then sediments have been continuously deposited. For establishing their chronology, major reversals of the earth's magnetic field provided initial tie points for the age model, confirming that the impact occurred in the earliest geomagnetic Gauss chron. Various stratigraphic parameters, reflecting redox conditions at the lake floor and climatic conditions in the catchment were tuned synchronously to Northern Hemisphere insolation variations and the marine oxygen isotope stack, respectively. Thus, a robust age model comprising more than 600 tie points could be defined. It could be shown that deposition of sediments in Lake El'gygytgyn occurred in concert with global climatic cycles. The upper ∼ 160 m of sediments represent the past 3.3 Ma, equivalent to sedimentation rates of 4 to 5 cm ka −1 , whereas the lower 160 m represent just the first 0.3 Ma after the impact, equivalent to sedimentation rates in the order of 45 cm ka −1 . This study also provides orbitally tuned ages for a total of 8 tephras deposited in Lake El'gygytgyn.
Organic carbon concentrations have increased in surface waters across parts of Europe and North America during the past decades, but the main drivers causing this phenomenon are still debated. A lack of observations beyond the last few decades inhibits a better mechanistic understanding of this process and thus a reliable prediction of future changes. Here we present past lake-water organic carbon trends inferred from sediment records across central Sweden that allow us to assess the observed increase on a centennial to millennial time scale. Our data show the recent increase in lake-water carbon but also that this increase was preceded by a landscape-wide, long-term decrease beginning already A.D. 1450-1600. Geochemical and biological proxies reveal that these dynamics coincided with an intensification of human catchment disturbance that decreased over the past century. Catchment disturbance was driven by the expansion and later cessation of widespread summer forest grazing and farming across central Scandinavia. Our findings demonstrate that early land use strongly affected past organic carbon dynamics and suggest that the influence of historical landscape utilization on contemporary changes in lake-water carbon levels has thus far been underestimated. We propose that past changes in land use are also a strong contributing factor in ongoing organic carbon trends in other regions that underwent similar comprehensive changes due to early cultivation and grazing over centuries to millennia.lake-water quality | carbon cycling | land use | Holocene | paleoecology O ver the past three decades, monitoring programs have recorded a widespread increase of organic carbon (OC) concentrations in surface waters in parts of Europe and North America (1-4). OC in lakes and rivers plays a major role in the global carbon cycle by transporting carbon from terrestrial to freshwater and marine environments (5), determining drinking water quality and associated treatment costs (6), and affecting aquatic ecosystem functioning. In aquatic ecosystems, OC influences energy mobilization, light conditions (7), water acidity (8), as well as the transport of metals and pollutants (9). The widespread occurrence of this increase in surface water OC, also referred to as browning or brownification due to an associated increase in color, suggests that regional rather than local factors are the drivers behind this phenomenon, but at present the underlying mechanisms are still controversial.Several hypotheses have been proposed to explain this recent OC increase, from climate change to changes in anthropogenic forcing such as declining atmospheric acid deposition or alterations in landscape utilization. A number of climate-sensitive mechanisms have been suggested to cause an increase in OC export from the terrestrial to the aquatic environment; for example, increased temperatures enhance decomposition rates in organic-rich soils (10) and promote vegetation cover (11). Changes in the amount and timing of precipitation potentially lead to alteration...
Pollen, charcoal and geochemical investigations were carried out on annually laminated sediments of Lake _ Zabińskie (54°07 0 54.5 00 N; 21°59 0 01.1 00 E) and the results were combined with historical and climate data to better understand the mechanism behind plant cover transformations. A millennium-long record of environmental history at 6-years time resolution permitted an assessment of vegetation responses to past human impact and climate fluctuations. Our results show that the history of the region with repeated periods of warfare, epidemics, famine and crop failures is well reflected by environmental proxies. Before the Teutonic Order crusade (AD 1230-1283), agricultural activities of the Prussian tribes were conducted at a distance from the studied lake and caused slight disturbances of local forests. A stronger human impact was registered after ca AD 1460. We confirm that co-domination of pine forests with spruce and oakhornbeam forests on drier habitats as well as the presence of birch and alder woods on wet surfaces near the lake lasted until AD 1610. We identified a transition period of 20 years between AD 1590 and 1610, when forest cover was significantly reduced and the area was partly transformed into open land used for farming activities. The comparison of our data with other pollen datasets from the region confirms significant spatio-temporal differences in the initiation of large-scale woodland clearings in the Great Masurian Lake District. A strong increase in local cultivation was noted after AD 1750 and became even stronger in the period AD 1810-1940. The last 60 years experienced a succession from arable fields and open grasslands to more tree-covered habitats overgrown by birch and alder.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.