A targeted search for glycosyltransferase (GT) encoding genes in the gene cluster of the urdamycin A producer Streptomyces fradiae Tu ¨2717 resulted in the discovery of urdGT2, a GT encoding gene located approximately 7 kb downstream of the minimal polyketide synthase (PKS) encoding genes. Subsequent inactivation of this gene created a mutant strain, which produces completely different metabolites than the wild-type strain, consisting of the three new urdamycins I, J, and K. Their structures provide new insight into the important C-glycosyl-transfer step of the urdamycin biosynthetic pathway. The structures indicate that the corresponding gene product UrdGT2 catalyzes the C-glycosyl transfer of activated D-olivose to an angucyclinone precursor, which already bears the angular 12b-OH group. The structures of the new urdamycins could not have arisen without the involvement of substrate flexible post-PKS modifying genes, i.e., glycosyltransferases and oxidoreductases. This work proves that targeted gene disruption experiments can lead to novel biologically active "unnatural" natural products, which arise through a formerly nonactivated shunt pathway. This approach is especially fruitful in work toward antitumor drugs. Urdamycin J shows a good anticancer activity in in vitro tests.
A novel conjugate of mitomycin C (MMC) and triamcinolone acetonide (TA) was synthesized using glutaric acid as a linker molecule. To determine the rate of hydrolysis, the conjugate was dissolved in aqueous solution and the rate of appearance of free MMC and TA was determined by high-performance liquid chromatography analysis. Antiproliferative activity of the MMC-TA conjugate and parent compounds was assessed using an NIH 3T3 fibroblast cell line. Cell growth was quantified using the MTT assay. Kinetic analysis of the hydrolysis rate demonstrated that the conjugate had a half-life of 23.6 h in aqueous solutions. The antiproliferative activities of the MMC-TA conjugate and MMC were both concentration dependent, with similar IC(50) values of 2.4 and 1.7 microM, respectively. However, individual responses at concentrations above 3 microM showed that the conjugate was less active than MMC alone. TA alone showed only limited inhibition of cell growth. Studies evaluating intravitreal injection of the conjugate demonstrate that this agent produced no measurable toxicity. Our data provide evidence that the MMC-TA conjugate could be used as a slow-release drug delivery system. This could in turn be used to modulate a posttreatment wound healing process or to treat various proliferative diseases.
ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 100 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a “Full Text” option. The original article is trackable via the “References” option.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.