We investigated physiological parameters (elemental and biochemical composition, metabolic rates, feeding activity and growth) of adult Antarctic krill in the Lazarev Sea in late spring (December), mid autumn (April) and mid winter (July and August) to evaluate proposed hypotheses of overwintering mechanisms. Our major observations are: (1) respiration rates were reduced by 30 to 50% in autumn and winter, compared to values in late spring; (2) feeding activity was reduced by 80 to 86% in autumn and winter, compared to late spring, at similar food concentrations; (3) feeding was omnivorous during winter; (4) with each moult, krill grew by 0.5 to 3.8% in length; (5) body lipids and, to a small extent, body proteins were consumed during winter. Adult Euphausia superba thus adopt metabolic slowdown and omnivorous feeding activity at low rates to survive the winter season in the Lazarev Sea. By mid autumn, metabolic activity is reduced, most likely being influenced by the Antarctic light regime, which is accompanied by a reduction in feeding activity and growth. Although at a low level, the feeding activity during winter seems to provide an important energy input.
Melatonin, the chief secretory product of the vertebrate pineal gland is also known to occur in numerous photoautotrophic organisms. The indoleamine is suspected to act as a transducer of photoperiodic information and/or to participate in antioxidative protection. In higher plants and other photoautotrophic organisms, contradictory results for melatonin content for samples from the same species show that further improvement of methods for reliable quantification is required. In the present study, melatonin was quantified in tomatoes, ginger and the marine green macroalga, Ulva lactuca, after extraction with three different extraction methods based on ether, acetone or perchloric acid. Melatonin was determined by enzyme-linked immunosorbent assay (ELISA) in high-performance liquid chromatography (HPLC)-purified extracts. The same HPLC system used for purification of extracts was used for parallel quantifications after derivatization of melatonin under alkaline conditions in the presence of hydrogen peroxide (HPLC-PD). Both quantification methods gave similar results with a high correlation [f(x) = 0.99x + 3.01; R(2) = 0.99]. In ginger, the melatonin concentration was below 5 pg/g (fresh weight, f.w.), whereas in tomatoes about 1200 pg/g (f.w.) were found, and in the green alga, U. lactuca, approximately 12 pg/g (f.w.). Taking into account the recovery rates for synthetic melatonin added prior to extraction, no substantial differences were observed in melatonin quantification between different extraction methods. The demonstrated methods based on HPLC purification and subsequent quantification by ELISA and HPLC-PD allow highly sensitive melatonin determinations in diverse photoautotrophic organisms with a low risk of overestimations by false-positive results.
Various processes in the output pathway of the circadian clock are thought to act as important clock targets resulting in the circadian rhythms of photosynthesis observed in various algae. Examples of such processes are synchronization of the cell cycle, pigmentation, and light or dark reaction of photosynthesis. The newly detected, robust photosynthetic circadian rhythm in the red macroalga Kappaphycus alvarezii was investigated in more detail with respect to rhythmically changing components within the photosynthetic apparatus. The following major results were obtained; (1) The growing tips of Kappaphycus (0 -2 cm) were found to exhibit a diurnal and circadian rhythm of nuclear division like many other algal species, (2) The circadian photosynthetic rhythm was apparent in the actively growing and dividing tip portions (0 -2 cm) as well as in older portions (2 -4 cm) with little remaining mitotic activity. The Kappaphycus rhythm seems therefore to be independent of the cell cycle, at least in the older portions of the thallus, (3) During real (L : D cycle) or subjective (LL) dark phases, net photosynthetic capacity (P max ) dropped drastically in young (tip) parts of the thallus, and a, the 'light affinity' parameter, decreased likewise. The net result of these two changes was an increase in the light saturation point, E k . Dark respiration did not change rhythmically from one circadian maximum to the next circadian minimum. DF/F m ' dropped during real and subjective night phases, while non-photochemical quenching (NPQ) increased. Low temperature (77 K) emission spectra with an excitation wavelength of 580 nm exhibited a larger increase of the 720 : 685 nm as well as the 720 : 696 nm emission quotients compared with spectra at 440 nm excitation for samples harvested in the middle of the subjective dark phase indicating changes in energy trapping from the phycobilisomes to the photosystems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.