Abstract. Version 2 of the Global Ocean Data Analysis Project (GLODAPv2) data product is composed of data from 724 scientific cruises covering the global ocean. It includes data assembled during the previous efforts GLODAPv1.1 (Global Ocean Data Analysis Project version 1.1) in 2004, CARINA (CARbon IN the Atlantic) in 2009/2010, and PACIFICA (PACIFic ocean Interior CArbon) in 2013, as well as data from an additional 168 cruises. Data for 12 core variables (salinity, oxygen, nitrate, silicate, phosphate, dissolved inorganic carbon, total alkalinity, pH, CFC-11, CFC-12, CFC-113, and CCl4) have been subjected to extensive quality control, including systematic evaluation of bias. The data are available in two formats: (i) as submitted but updated to WOCE exchange format and (ii) as a merged and internally consistent data product. In the latter, adjustments have been applied to remove significant biases, respecting occurrences of any known or likely time trends or variations. Adjustments applied by previous efforts were re-evaluated. Hence, GLODAPv2 is not a simple merging of previous products with some new data added but a unique, internally consistent data product. This compiled and adjusted data product is believed to be consistent to better than 0.005 in salinity, 1 % in oxygen, 2 % in nitrate, 2 % in silicate, 2 % in phosphate, 4 µmol kg−1 in dissolved inorganic carbon, 6 µmol kg−1 in total alkalinity, 0.005 in pH, and 5 % for the halogenated transient tracers.The original data and their documentation and doi codes are available at the Carbon Dioxide Information Analysis Center (http://cdiac.ornl.gov/oceans/GLODAPv2/). This site also provides access to the calibrated data product, which is provided as a single global file or four regional ones – the Arctic, Atlantic, Indian, and Pacific oceans – under the doi:10.3334/CDIAC/OTG.NDP093_GLODAPv2. The product files also include significant ancillary and approximated data. These were obtained by interpolation of, or calculation from, measured data. This paper documents the GLODAPv2 methods and products and includes a broad overview of the secondary quality control results. The magnitude of and reasoning behind each adjustment is available on a per-cruise and per-variable basis in the online Adjustment Table.
Abstract. We present a mapped climatology (GLODAPv2.2016b) of ocean biogeochemical variables based on the new GLODAP version 2 data product (Olsen et al., 2016; Key et al., 2015), which covers all ocean basins over the years 1972 to 2013. The quality-controlled and internally consistent GLODAPv2 was used to create global 1° × 1° mapped climatologies of salinity, temperature, oxygen, nitrate, phosphate, silicate, total dissolved inorganic carbon (TCO2), total alkalinity (TAlk), pH, and CaCO3 saturation states using the Data-Interpolating Variational Analysis (DIVA) mapping method. Improving on maps based on an earlier but similar dataset, GLODAPv1.1, this climatology also covers the Arctic Ocean. Climatologies were created for 33 standard depth surfaces. The conceivably confounding temporal trends in TCO2 and pH due to anthropogenic influence were removed prior to mapping by normalizing these data to the year 2002 using first-order calculations of anthropogenic carbon accumulation rates. We additionally provide maps of accumulated anthropogenic carbon in the year 2002 and of preindustrial TCO2. For all parameters, all data from the full 1972–2013 period were used, including data that did not receive full secondary quality control. The GLODAPv2.2016b global 1° × 1° mapped climatologies, including error fields and ancillary information, are available at the GLODAPv2 web page at the Carbon Dioxide Information Analysis Center (CDIAC; doi:10.3334/CDIAC/OTG.NDP093_GLODAPv2).
Abstract. Data on the carbon and carbon relevant hydrographic and hydrochemical parameters from previously not publicly available cruises in the Arctic, Atlantic and Southern Ocean have been retrieved and merged to a new data base: CARINA (CARbon IN the Atlantic). These data have gone through rigorous quality control (QC) procedures to assure the highest possible quality and consistency. All CARINA data were subject to primary QC; a process in which data are studied in order to identify outliers and obvious errors. Additionally, secondary QC was performed for several of the measured parameters in the CARINA data base. Secondary QC is a process in which the data are objectively studied in order to quantify systematic differences in the reported values. This process involved crossover analysis, and as a second step the offsets derived from the crossover analysis were used to calculate corrections of the parameters measured on individual cruises using least square models. Significant biases found in the data have been corrected in the data products, i.e. three merged data files containing measured, calculated and interpolated data for each of the three regions (i.e. Arctic Mediterranean Seas, Atlantic, and Southern Ocean). Here we report on the technical details of the quality control and on tools that have been developed and used during the project, including procedures for crossover analysis and least square models. Furthermore, an interactive website for uploading of results, plots, comments etc. was developed and was of critical importance for the success of the project, this is also described here. Data coverage and parameter measuredRepository-References:
Abstract. The Global Ocean Data Analysis Project (GLODAP) is a synthesis effort providing regular compilations of surface to bottom ocean biogeochemical data, with an emphasis on seawater inorganic carbon chemistry and related variables determined through chemical analysis of water samples. This update of GLODAPv2, v2.2019, adds data from 116 cruises to the previous version, extending its coverage in time from 2013 to 2017, while also adding some data from prior years. GLODAPv2.2019 includes measurements from more than 1.1 million water samples from the global oceans collected on 840 cruises. The data for the 12 GLODAP core variables (salinity, oxygen, nitrate, silicate, phosphate, dissolved inorganic carbon, total alkalinity, pH, CFC-11, CFC-12, CFC-113, and CCl4) have undergone extensive quality control, especially systematic evaluation of bias. The data are available in two formats: (i) as submitted by the data originator but updated to WOCE exchange format and (ii) as a merged data product with adjustments applied to minimize bias. These adjustments were derived by comparing the data from the 116 new cruises with the data from the 724 quality-controlled cruises of the GLODAPv2 data product. They correct for errors related to measurement, calibration, and data handling practices, taking into account any known or likely time trends or variations. The compiled and adjusted data product is believed to be consistent to better than 0.005 in salinity, 1 % in oxygen, 2 % in nitrate, 2 % in silicate, 2 % in phosphate, 4 µmol kg−1 in dissolved inorganic carbon, 4 µmol kg−1 in total alkalinity, 0.01–0.02 in pH, and 5 % in the halogenated transient tracers. The compilation also includes data for several other variables, such as isotopic tracers. These were not subjected to bias comparison or adjustments. The original data, their documentation and DOI codes are available in the Ocean Carbon Data System of NOAA NCEI (https://www.nodc.noaa.gov/ocads/oceans/GLODAPv2_2019/, last access: 17 September 2019). This site also provides access to the merged data product, which is provided as a single global file and as four regional ones – the Arctic, Atlantic, Indian, and Pacific oceans – under https://doi.org/10.25921/xnme-wr20 (Olsen et al., 2019). The product files also include significant ancillary and approximated data. These were obtained by interpolation of, or calculation from, measured data. This paper documents the GLODAPv2.2019 methods and provides a broad overview of the secondary quality control procedures and results.
Abstract. We here present the new GLODAP version 2 (GLODAPv2) mapped climatology, which is based on data from all ocean basins up to and including 2013. In contrast to its predecessor, GLODAPv1.1, this climatology also covers the Arctic Ocean and Mediterranean Sea. The quality controlled and internally consistent data product files of GLODAPv2 (Olsen et al., 2015; Key et al., 2015) were used to create global 1° × 1° mapped climatologies of total dissolved inorganic carbon, total alkalinity, and pH using the Data-Interpolating Variational Analysis (DIVA) mapping method. Climatologies were created for 33 standard pressure surfaces. To minimize the risk of translating temporal variability in the input data to spatial variations in the mapped climatologies, layers with pressures of 1000 dbar, or less, were mapped for two different time periods: 1986–1999 and 2000–2013, roughly corresponding to the "WOCE" and "CLIVAR" eras of global ocean surveys. All data from the 1972–2013 period were used in the mapping of pressures higher than 1000 dbar. In addition to the marine CO2 chemistry parameters listed above, nitrate, phosphate, silicate, oxygen, salinity and theta were also mapped using DIVA. For these parameters all data from the full 1972–2013 period were used on all 33 surfaces. The GLODAPv2 global 1° × 1° mapped climatologies, including error fields and ancillary information have been made available at the GLODAPv2 web page at the Carbon Dioxide Information Analysis Center (CDIAC, http://cdiac.ornl.gov/oceans/GLODAPv2/).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.