Slack (Slo2.2) is a sodium-activated potassium channel that regulates neuronal firing activities and patterns. Previous studies identified Slack in sensory neurons, but its contribution to acute and chronic pain in vivo remains elusive. Here we generated global and sensory neuron-specific Slack mutant mice and analyzed their behavior in various animal models of pain. Global ablation of Slack led to increased hypersensitivity in models of neuropathic pain, whereas the behavior in models of inflammatory and acute nociceptive pain was normal. Neuropathic pain behaviors were also exaggerated after ablation of Slack selectively in sensory neurons. Notably, the Slack opener loxapine ameliorated persisting neuropathic pain behaviors. In conclusion, Slack selectively controls the sensory input in neuropathic pain states, suggesting that modulating its activity might represent a novel strategy for management of neuropathic pain.
Chemokines mediate the recruitment of leukocytes to the sites of inflammation. N-terminal truncation of chemokines by the protease dipeptidyl peptidase IV (DPPIV) potentially restricts their activity during inflammatory processes such as allergic reactions, but direct evidence in vivo is very rare. After demonstrating that N-terminal truncation of the chemokine CCL11/eotaxin by DPPIV results in a loss of CCR3-mediated intracellular calcium mobilization and CCR3 internalization in human eosinophils, we focused on the in vivo role of CCL11 and provide direct evidence for specific kinetic and rate-determining effects by DPPIV-like enzymatic activity on CCL11-mediated responses of eosinophils. Namely, it is demonstrated that i.v. administration of CCL11 in wild-type F344 rats leads to mobilization of eosinophils into the blood, peaking at 30 min. This mobilization is significantly increased in DPPIV-deficient F344 rats. Intradermal administration of CCL11 is followed by a dose-dependent recruitment of eosinophils into the skin and is significantly more effective in DPPIV-deficient F344 mutants as well as after pharmacological inhibition of DPPIV. Interestingly, CCL11 application leads to an up-regulation of DPPIV, which is not associated with negative feedback inhibition via DPPIV-cleaved CCL11(3–74). These findings demonstrate regulatory effects of DPPIV for the recruitment of eosinophils. Furthermore, they illustrate that inhibitors of DPPIV have the potential to interfere with chemokine-mediated effects in vivo including but not limited to allergy.
Propofol and dexmedetomidine are very commonly used sedative agents. However, several case reports demonstrated cardiovascular adverse effects of these two sedatives. Both substances were previously demonstrated to quite potently inhibit neuronal voltage-gated Na(+) channels. Thus, a possible molecular mechanism for some of their cardiac side effects is an inhibition of cardiac voltage gated Na(+) channels. In this study, we therefore explored the effects of propofol and dexmedetomidine on the cardiac predominant Na(+) channel α-subunit Nav1.5. Effects of propofol and dexmedetomidine were investigated on constructs of the human α-subunit Nav1.5 stably expressed in HEK-293 cells by means of whole-cell patch clamp recordings. Both agents induced a concentration-dependent tonic inhibition of Nav1.5. The calculated IC50 value for propofol was 228 ± 10 μM, and for dexmedetomidine 170 ± 20 μM. Tonic block only marginally increased on inactivated channels, and a weak use-dependent block at 10 Hz was observed for dexmedetomidine (16 ± 2 % by 100 μM). The voltage dependencies of fast and slow inactivation as well as the time course of recovery from inactivation were shifted by both propofol and dexmedetomidine. Propofol (IC50 126 ± 47 μM) and dexmedetomidine (IC50 182 ± 27 μM) blocked the persistent sodium current induced by veratradine. Finally, the local-anesthetic (LA)-insensitive mutant Nav1.5-F1760A exhibited reduced tonic and use-dependent block by both substances. Dexmedetomidine was generally more potent as compared to propofol. Propofol and dexmedetomidine seem to interact with the LA-binding site to inhibit the cardiac Na(+) channel Nav1.5 in a state-dependent manner. These data suggest that Nav1.5 is a hitherto unrecognized molecular component of some cardiovascular side effects of these sedative agents.
Background The relatively membrane-impermeable lidocaine derivative QX-314 has been reported to permeate the ion channels transient receptor potential vanilloid 1 (TRPV1) and transient receptor potential cation channel, subfamily A, member 1 (TRPA1) to induce a selective inhibition of sensory neurons. This approach is effective in rodents, but it also seems to be associated with neurotoxicity. The authors examined whether the human isoforms of TRPV1 and TRPA1 allow intracellular entry of QX-314 to mediate sodium channel inhibition and cytotoxicity. Methods Human embryonic kidney 293 (HEK-293) cells expressing wild-type or mutant human (h) TRPV1 or TRPA1 constructs as well as the sodium channel Nav1.7 were investigated by means of patch clamp and ratiometric calcium imaging. Cytotoxicity was examined by flow cytometry. Results Activation of hTRPA1 by carvacrol and hTRPV1 by capsaicin produced a QX-314–independent reduction of sodium current amplitudes. However, permeation of QX-314 through hTRPV1 or hTRPA1 was evident by a concentration-dependent, use-dependent inhibition of Nav1.7 activated at 10 Hz. Five and 30 mM QX-314 activated hTRPV1 via mechanisms involving the intracellular vanilloid-binding domain and hTRPA1 via unknown mechanisms independent of intracellular cysteins. Expression of hTRPV1, but not hTRPA1, was associated with a QX-314–induced cytotoxicity (viable cells 48 ± 5% after 30 mM QX-314) that was ameliorated by the TRPV1 antagonist 4-(3-chloro-2-pyridinyl)-N-[4-(1,1-dimethylethyl)phenyl]-1-piperazinecarboxamide (viable cells 81 ± 5%). Conclusions The study data demonstrate that QX-314 directly activates and permeates the human isoforms of TRPV1 and TRPA1 to induce inhibition of sodium channels, but also a TRPV1-dependent cytotoxicity. These results warrant further validation of this approach in more intact preparations and may be valuable for the development of this concept into clinical practice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.