In the midst of an obesity epidemic, the promotion of brown adipose tissue (BAT) function and the browning of white adipose tissue (WAT) have emerged as promising therapeutic targets to increase energy expenditure and counteract weight gain. Despite the fact that the thermogenic potential of bone fide BAT in rodents is several orders of magnitudes higher than white fat containing brite/beige adipocytes, WAT browning represents a particularly intriguing concept in humans given the extreme amount of excess WAT in obese individuals. In addition, the clear distinction between classic brown and beige fat that has been proposed in mice does not exist in humans. In fact, studies of human BAT biopsies found controversial results suggesting both classic brown and beige characteristics. Irrespective of the true ‘color’, accumulating evidence suggests the induction of thermogenic adipocytes in human WAT depots in response to specific stimuli, highlighting that WAT browning may occur in both, mice and humans. These observations also emphasize the great plasticity of human fat depots and raise important questions about the metabolic properties of thermogenically active adipose tissue in humans and the potential therapeutic implications. We will first review the cellular and molecular aspects of selected adipose tissue browning concepts that have been identified in mouse models with emphasis on neuronal factors, the microbiome, immune cells and several hormones. We will also summarize the evidence for adipose tissue browning in humans including some experimental pharmacologic approaches.
Our data show a high prevalence of micronutrient deficiency in patients with morbid obesity preoperatively and emphasize the importance of exact preoperative evaluation and adequate substitution as well as postoperative surveillance.
Background Accumulating evidence links brown adipose tissue (BAT) to increased cold-induced energy expenditure (CIEE) and regulation of lipid metabolism in humans. BAT has also been proposed as a novel source for biologically active lipid mediators including polyunsaturated fatty acids (PUFAs) and oxylipins. However, little is known about cold-mediated differences in energy expenditure and various lipid species between individuals with detectable BAT positive (BATpos) and those without BAT negative (BATneg). Methods Here we investigated a unique cohort of matched BATpos and BATneg individuals identified by 18F-fluorodeoxyglucose positron emission tomography combined with computed tomography ([18F]-FDG PET/CT). BAT function, CIEE, and circulating oxylipins, were analyzed before and after short-term cold exposure using [18F]-FDG PET/CT, indirect calorimetry, and high-resolution mass spectrometry, respectively. Results We found that active BAT is the major determinant of CIEE since only BATpos individuals experienced significantly increased energy expenditure in response to cold. A single bout of moderate cold exposure resulted in the dissipation of an additional 20 kcal excess energy in BATpos but not in BATneg individuals. The presence of BAT was associated with a unique systemic PUFA and oxylipin profile characterized by increased levels of anti-inflammatory omega-3 fatty acids as well as cytochrome P450 products but decreased concentrations of some proinflammatory hydroxyeicosatetraenoic acids when compared with BATneg individuals. Notably, cold exposure raised circulating levels of various lipids, including the recently identified BAT-derived circulating factors (BATokines) DiHOME and 12-HEPE, only in BATpos individuals. Conclusions In summary, our data emphasize that BAT in humans is a major contributor toward cold-mediated energy dissipation and a critical organ in the regulation of the systemic lipid pool.
Obesity is associated with increasing cardiometabolic morbidity and mortality rates worldwide. Not everyone with obesity, however, develops metabolic complications. Brown adipose tissue (BAT) has been suggested to be a promoter of leanness and metabolic health. To date, little is known about the prevalence and metabolic function of BAT in people with severe obesity, a population at high cardiometabolic risk. In this cross-sectional study, we included 40 individuals with World Health Organization class II-III obesity (BMI ≥35 kg/m2). Using a 150-min personalized cooling protocol and 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography/computed tomography, cold-activated BAT was detectable in 14 of the participants (35%). Cold-induced thermogenesis was significantly higher in participants with detectable BAT compared with those without. Notably, individuals with obesity and active BAT had 28.8% lower visceral fat mass despite slightly higher total fat mass compared with those without detectable BAT 18F-FDG uptake. The lower amount of visceral fat mass was accompanied by lower insulin resistance and systemic inflammation and improved nonalcoholic fatty liver disease parameters, all adjusted for age, sex, and percent body fat. Contrary to previous assumptions, we show here that a significant fraction of individuals with severe obesity has active BAT. We found that decreased BAT 18F-FDG uptake was not associated with adiposity per se but with higher visceral fat mass. In summary, active BAT is linked to a healthier metabolic phenotype in obesity.
These data imply that multi-morbid elderly PAD patients still benefit by intensified specialist care compared to the usual primary care setting. KEY MESSAGES Center-based patient care improves survival in patients with peripheral arterial disease; mortality was reduced from 82 to 21 events per 1000 patient-years (rate ratio 0.26). Mortality was related to age (HR 1.46), CRP (HR 1.36), and nephropathy (HR 2.7). A multifactorial approach combining adequate drug prescription, accomplishment of agreed goals and repetitive training to initiate, implement, and persist treatment adaptations was applied.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.