SummaryExogenously provided proline has been shown to serve as an osmoprotectant in Bacillus subtilis. Uptake of proline is under osmotic control and functions independently of the known transport systems for the osmoprotectant glycine betaine. We cloned the structural gene (opuE ) for this proline transport system and constructed a chromosomal opuE mutant by marker replacement. The resulting B. subtilis strain was entirely deficient in osmoregulated proline transport activity and was no longer protected by exogenously provided proline, attesting to the central importance of OpuE for proline uptake in high-osmolarity environments. The transport characteristics and growth properties of the opuE mutant revealed the presence of a second proline transport activity in B. subtilis. DNA sequence analysis of the opuE region showed that the OpuE transporter (492 residues) consists of a single integral membrane protein. Database searches indicated that OpuE is a member of the sodium/solute symporter family, comprising proteins from both prokaryotes and eukaryotes that obligatorily couple substrate uptake to Na þ symport. The highest similarity was detected to the PutP proline permeases, which are used in Escherichia coli, Salmonella typhimurium and Staphylococcus aureus for the acquisition of proline as a carbon and nitrogen source, but not for osmoprotective purposes. An elevation of the osmolarity of the growth medium by either ionic or nonionic osmolytes resulted in a strong increase in the OpuE-mediated proline uptake. This osmoregulated proline transport activity was entirely dependent on de novo protein synthesis, suggesting a transcriptional control mechanism. Primer extension analysis revealed the presence of two osmoregulated and tightly spaced opuE promoters. The activity of one of these promoters was dependent on sigma A and the second promoter was controlled by the general stress transcription factor sigma B.
Bacillus subtilis synthesizes large amounts of the compatible solute proline as a cellular defense against high osmolarity to ensure a physiologically appropriate level of hydration of the cytoplasm and turgor. It also imports proline for this purpose via the osmotically inducible OpuE transport system. Unexpectedly, an opuE mutant was at a strong growth disadvantage in high-salinity minimal media lacking proline. Appreciable amounts of proline were detected in the culture supernatant of the opuE mutant strain, and they rose concomitantly with increases in the external salinity. We found that the intracellular proline pool of severely salinity-stressed cells of the opuE mutant was considerably lower than that of its opuE ؉ parent strain. This loss of proline into the medium and the resulting decrease in the intracellular proline content provide a rational explanation for the observed salt-sensitive growth phenotype of cells lacking OpuE. None of the known MscL-and MscS-type mechanosensitive channels of B. subtilis participated in the release of proline under permanently imposed high-salinity growth conditions. The data reported here show that the OpuE transporter not only possesses the previously reported role for the scavenging of exogenously provided proline as an osmoprotectant but also functions as a physiologically highly important recapturing device for proline that is synthesized de novo and subsequently released by salt-stressed B. subtilis cells. The wider implications of our findings for the retention of compatible solutes by osmotically challenged microorganisms and the roles of uptake systems for compatible solutes are considered.
We report here that the cyclic amino acid ectoine functions as an osmoprotectant for the soil bacterium Bacillus subtilis. Growth experiments with a set of B. subtilis strains that carry defined mutations in the glycine betaine transport systems OpuA, OpuC and OpuD and the choline transport system OpuB revealed that ectoine was specifically accumulated via the ABC‐transport system OpuC. Competition experiments employing unlabeled ectoine and radiolabeled glycine betaine showed that the OpuC transport system has a low affinity for ectoine with a Ki value of approximately 1.5 mM. Ectoine was identified by 1H NMR spectroscopy in the solute pool of cells grown in the presence of ectoine. Ectoine could not be used by B. subtilis as sole carbon or nitrogen source. Our data thus characterise ectoine as a metabolically inert stress compound for B. subtilis and establish a crucial role for the ABC‐transport system OpuC for the acquisition of the osmoprotectant ectoine from the environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.